Neoplastic meningitis pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 47: Line 47:
==Microscopic pathology==
==Microscopic pathology==
The microscopic pathology of neoplastic meningitis may vary according to the primary cancer involved. Generally, on microscopic histopathological analysis, neoplastic meningitis is characterized by large, hyperchromatic cells.<ref name="BerzeroDiamanti2015">{{cite journal|last1=Berzero|first1=Giulia|last2=Diamanti|first2=Luca|last3=Di Stefano|first3=Anna Luisa|last4=Bini|first4=Paola|last5=Franciotta|first5=Diego|last6=Imarisio|first6=Ilaria|last7=Pedrazzoli|first7=Paolo|last8=Magrassi|first8=Lorenzo|last9=Morbini|first9=Patrizia|last10=Farina|first10=Lisa Maria|last11=Bastianello|first11=Stefano|last12=Ceroni|first12=Mauro|last13=Marchioni|first13=Enrico|title=Meningeal Melanomatosis: A Challenge for Timely Diagnosis|journal=BioMed Research International|volume=2015|year=2015|pages=1–6|issn=2314-6133|doi=10.1155/2015/948497}}</ref>
The microscopic pathology of neoplastic meningitis may vary according to the primary cancer involved. Generally, on microscopic histopathological analysis, neoplastic meningitis is characterized by large, hyperchromatic cells.<ref name="BerzeroDiamanti2015">{{cite journal|last1=Berzero|first1=Giulia|last2=Diamanti|first2=Luca|last3=Di Stefano|first3=Anna Luisa|last4=Bini|first4=Paola|last5=Franciotta|first5=Diego|last6=Imarisio|first6=Ilaria|last7=Pedrazzoli|first7=Paolo|last8=Magrassi|first8=Lorenzo|last9=Morbini|first9=Patrizia|last10=Farina|first10=Lisa Maria|last11=Bastianello|first11=Stefano|last12=Ceroni|first12=Mauro|last13=Marchioni|first13=Enrico|title=Meningeal Melanomatosis: A Challenge for Timely Diagnosis|journal=BioMed Research International|volume=2015|year=2015|pages=1–6|issn=2314-6133|doi=10.1155/2015/948497}}</ref>
===Gallery===
<gallery>
Image:Micropathologyneoplastic meningitis image 1.PNG|<sub>Light microscopy pictures of the cytological specimen of cerebrospinal fluid obtained from patient 1: (a) hematoxylin and eosin staining of the hypercellular sample, with large, hyperchromatic cells associated with erythrocytes; (b) atypical cells stained with Melan-A, a melanoma-specific marker; (c) Schmorl staining confirmed the presence of melanin (blue granular stain) in the cytoplasm; magnification, 20x.<ref name="BerzeroDiamanti2015">{{cite journal|last1=Berzero|first1=Giulia|last2=Diamanti|first2=Luca|last3=Di Stefano|first3=Anna Luisa|last4=Bini|first4=Paola|last5=Franciotta|first5=Diego|last6=Imarisio|first6=Ilaria|last7=Pedrazzoli|first7=Paolo|last8=Magrassi|first8=Lorenzo|last9=Morbini|first9=Patrizia|last10=Farina|first10=Lisa Maria|last11=Bastianello|first11=Stefano|last12=Ceroni|first12=Mauro|last13=Marchioni|first13=Enrico|title=Meningeal Melanomatosis: A Challenge for Timely Diagnosis|journal=BioMed Research International|volume=2015|year=2015|pages=1–6|issn=2314-6133|doi=10.1155/2015/948497}}</ref></sub>
Image:Micropathologyneoplastic meningitis image 2.PNG|<sub>Microscopic images of the cytospin of the cerebrospinal fluid cells from patient 1: (a) hematoxylin and eosin staining of large, hyperchromatic cells along with erythrocytes, lymphoma monocytoid cells, and eosinophils (asterisks) and (b) an atypical cell at larger magnification; arrows indicate granules of melanin.<ref name="BerzeroDiamanti2015">{{cite journal|last1=Berzero|first1=Giulia|last2=Diamanti|first2=Luca|last3=Di Stefano|first3=Anna Luisa|last4=Bini|first4=Paola|last5=Franciotta|first5=Diego|last6=Imarisio|first6=Ilaria|last7=Pedrazzoli|first7=Paolo|last8=Magrassi|first8=Lorenzo|last9=Morbini|first9=Patrizia|last10=Farina|first10=Lisa Maria|last11=Bastianello|first11=Stefano|last12=Ceroni|first12=Mauro|last13=Marchioni|first13=Enrico|title=Meningeal Melanomatosis: A Challenge for Timely Diagnosis|journal=BioMed Research International|volume=2015|year=2015|pages=1–6|issn=2314-6133|doi=10.1155/2015/948497}}</ref></sub>
</gallery>


== Microscopic Pathology ==
== Microscopic Pathology ==

Revision as of 14:23, 26 May 2019

Neoplastic meningitis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Neoplastic Meningitis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

Staging

History and Symptoms

Physical Examination

Laboratory Findings

X-Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Neoplastic meningitis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Neoplastic meningitis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Neoplastic meningitis pathophysiology

CDC on Neoplastic meningitis pathophysiology

Neoplastic meningitis pathophysiology in the news

Blogs on Neoplastic meningitis pathophysiology

Directions to Hospitals Treating Choroid plexus papilloma

Risk calculators and risk factors for Neoplastic meningitis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Sujit Routray, M.D. [2]

Overview

Neoplastic meningitis refers to the spread of malignant cells through the cerebrospinal fluid space. These cells can be originated both in primary CNS tumors (e.g. drop-metastases), as well as from distant tumors that have metastasized (hematogenous spread).[1] The microscopic pathology of neoplastic meningitis may vary according to the primary cancer involved. Generally, on microscopic histopathological analysis, neoplastic meningitis is characterized by large, hyperchromatic cells.[2]

Pathogenesis

Neoplastic meningitis refers to the spread of malignant cells through the cerebrospinal fluid space. These cells can be originated both in primary CNS tumors (e.g. drop-metastases), as well as from distant tumors that have metastasized (hematogenous spread).[1]

From primary cancer to the meninges

  • Neoplastic meningitis is a secondary cancer meaning that it is the result of neoplastic cells that have metastasized from a primary cancer site. These cancers develop an enzyme that is able to break down blood vessels at a microscopic level. These cells enter the blood vessels and travel across the body. Once the brain is reached, they break down the blood brain barrier to enter the cerebrospinal fluid (CSF). The cancerous cells seed and disseminate into the leptomeninges which are composed of the arachnoid and the pia. The CSF continues to carry neoplastic cells through the brain tracts and spreads the cancerous cells.[3]
  • Since neoplastic meningitis is a result of primary cancer metastasis and can develop from primary brain tumors or parenchymal metastasis when tumor cells are lodged in small central nervous system (CNS) vasculature, causing local ischemia and vessel damage which result in tumor spillage into the Virchow-Robin spaces and providing access to the subarachnoid space.

Invasion routes

  • Hematogenous spread occurs either through the venous plexus of Batson or by arterial dissemination. This occurs with arterioles as a result of tumor cells being lodged in vessels that feed the meninges and later causing leakage into the meninges and CSF. This same situation also appears with spinal arteries where leakage of tumor cells is into the nerve roots. Tumor cells may also seed the choroid plexus, where CSF is produced, and ultimately gaining direct access to the CSF. Seeding of the choroid plexus is most common in patients with third and lateral ventricular hydrocephalus.[3]
  • Venous spread may occur when intra-abdominal or thoracic pressure increases and venous flow is retrograde which then allows the tumor cells in the systemic venous system to enter the vertebral venous system.
  • Centripetal migration from systemic tumors along perineural, invasion of nerve space, or perivascular spaces. Malignant cells can migrate along spinal or cranial nerve (epineurium-perineurium), invade the subpial space, travel along blood vessels into the endoneurial space, or invade the nerve parenchyma.
  • Often, the infiltration happens at the base of the brain, dorsal surface, and especially at the cauda equina which is largely due to the effect of gravity. Once in the CSF, malignant cells can extend along the membrane surfaces or spread freely in the CSF and attach to other locations. These cells have the ability to penetrate the pial membrane and invade the spinal cord and cranial nerves.

Infiltration to spinal cord

  • Infiltration from the subarachnoid space into the spinal cord occurs primarily along the perivascular tissues that surround blood vessels at the brain entrance. Infiltration from the anterior median fissure, a 3mm deep furrow on the anterior side of the spinal cord, to the anterior horn of the spinal cord, the ventral grey matter of the spinal cord, is found along the central artery. Direct infiltration of the nerve roots is also observed, mostly from the dorsal roots (the afferent sensory root of the spinal nerve) than the ventral roots (the efferent motor root of a spinal nerve).
  • With mild infiltration, tumor cells are found diffusely in the subarachnoid space from the cervical to sacral levels. In some cases, there are no differences between spine levels. Infiltration from the subarachnoid space into the spinal cord occurs mainly along the perivascular space of the white matter. However, in some cases, direct infiltration into the spinal cord parenchyma is found together with destruction of the piamater.

Genetics

[Disease name] is transmitted in [mode of genetic transmission] pattern.

OR

Genes involved in the pathogenesis of [disease name] include:

  • [Gene1]
  • [Gene2]
  • [Gene3]

OR

The development of [disease name] is the result of multiple genetic mutations such as:

  • [Mutation 1]
  • [Mutation 2]
  • [Mutation 3]

Associated Conditions

Conditions associated with [disease name] include:

  • [Condition 1]
  • [Condition 2]
  • [Condition 3]

Microscopic pathology

The microscopic pathology of neoplastic meningitis may vary according to the primary cancer involved. Generally, on microscopic histopathological analysis, neoplastic meningitis is characterized by large, hyperchromatic cells.[2]

Microscopic Pathology

On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

  1. 1.0 1.1 Leptomeningeal metastases. Dr Bruno Di Muzio and A.Prof Frank Gaillard et al. Radiopaedia 2016. http://radiopaedia.org/articles/leptomeningeal-metastases. Accessed on January 20, 2016
  2. 2.0 2.1 Berzero, Giulia; Diamanti, Luca; Di Stefano, Anna Luisa; Bini, Paola; Franciotta, Diego; Imarisio, Ilaria; Pedrazzoli, Paolo; Magrassi, Lorenzo; Morbini, Patrizia; Farina, Lisa Maria; Bastianello, Stefano; Ceroni, Mauro; Marchioni, Enrico (2015). "Meningeal Melanomatosis: A Challenge for Timely Diagnosis". BioMed Research International. 2015: 1–6. doi:10.1155/2015/948497. ISSN 2314-6133.
  3. 3.0 3.1 Causes of neoplastic meningitis. Wikipedia 2016. https://en.wikipedia.org/wiki/Neoplastic_meningitis. Accessed on January 20, 2016


Template:WikiDoc Sources