Glycogen storage disease type I pathophysiology: Difference between revisions

Jump to navigation Jump to search
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Glycogen storage disease type I}}
{{Glycogen storage disease type I}}
{{CMG}}
{{CMG}}; {{AE}}{{Anmol}}
 
==Overview==
==Overview==
Glycogen storage disease type 1 (GSD 1) results due to defects in either [[hydrolysis]] or transport of [[glucose-6-phosphate]]. [[Glucose-6-phosphatase]] catalyzes the conversion of [[glucose-6-phosphate]] to [[glucose]] during [[glycogenolysis]] and [[gluconeogenesis]]. The inability of [[glucose-6-phosphate]] to leave cells leads to severe fasting [[hypoglycemia]]. Impairment of [[glycogenolysis]] leads to the accumulation of [[fat]] and [[glycogen]] deposition resulting in characteristic [[hepatomegaly]]. [[Glycogen]] also deposits in [[kidneys]] leading to nephromegaly, which is usually detected by [[imaging techniques]]. [[Hematologic]] disorders in GSD type 1 include [[anemia]], [[bleeding diathesis]], and [[neutropenia]]. [[Neutropenia]] and [[neutrophil]] dysfunction is specific of GSD type 1b. Abnormal expression of [[hepcidin]] in GSD type 1 leads to refractory [[iron deficiency anemia]]. GSD type 1 follows an [[autosomal recessive]] pattern. On gross pathology analysis, the features of glycogen storage disease type 1 include [[hepatomegaly]]. [[Hepatomegaly]] decreases as age increases. On microscopic histopathological analysis, the features of glycogen storage disease type 1 include distended [[liver cells]] by [[glycogen]] and [[fat]], [[Periodic acid-Schiff stain|PAS]] positive and [[diastase]] sensitive [[glycogen]] distributed uniformly within the [[cytoplasm]], and numerous large [[lipid]] [[vacuoles]].
==Pathophysiology==
==Pathophysiology==
===Normal carbohydrate balance and maintenance of blood glucose levels===
*Glycogen storage disease type 1 (GSD 1) results due to defects in either [[hydrolysis]] or transport of [[glucose-6-phosphate]].<ref name="pmid12373565">{{cite journal| author=Moses SW| title=Historical highlights and unsolved problems in glycogen storage disease type 1. | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S2-9 | pmid=12373565 | doi=10.1007/s00431-002-0997-6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373565  }} </ref><ref name="KishnaniAustin2014">{{cite journal|last1=Kishnani|first1=Priya S.|last2=Austin|first2=Stephanie L.|last3=Abdenur|first3=Jose E.|last4=Arn|first4=Pamela|last5=Bali|first5=Deeksha S.|last6=Boney|first6=Anne|last7=Chung|first7=Wendy K.|last8=Dagli|first8=Aditi I.|last9=Dale|first9=David|last10=Koeberl|first10=Dwight|last11=Somers|first11=Michael J.|last12=Burns Wechsler|first12=Stephanie|last13=Weinstein|first13=David A.|last14=Wolfsdorf|first14=Joseph I.|last15=Watson|first15=Michael S.|title=Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics|journal=Genetics in Medicine|year=2014|issn=1098-3600|doi=10.1038/gim.2014.128}}</ref>
[[Glycogen]] in liver and (to a lesser degree) kidneys serves as a form of stored, rapidly accessible glucose, so that the blood glucose level can be maintained between meals. For about 3 hours after a [[carbohydrate]]-containing meal, high [[insulin]] levels direct liver cells to take glucose from the blood, to convert it to [[glucose-6-phosphate]] (G6P), and to add the G6P molecules to the ends of chains of glycogen (glycogen synthesis). Excess G6P is also shunted into production of [[triglyceride]]s and exported for storage in [[adipose tissue]] as [[fat]].  
*GSD type 1a is due to the deficiency of enzyme [[glucose-6-phosphatase]] ([[Glucose-6-phosphatase|G6Pase]]).<ref name="pmid18449899">{{cite journal| author=Chou JY, Mansfield BC| title=Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. | journal=Hum Mutat | year= 2008 | volume= 29 | issue= 7 | pages= 921-30 | pmid=18449899 | doi=10.1002/humu.20772 | pmc=2475600 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18449899  }} </ref>
*GDS type 1b is due to defect in [[glucose-6-phosphate]] [[translocase]] (T1 deficiency).<ref name="pmid10482962">{{cite journal| author=Veiga-da-Cunha M, Gerin I, Chen YT, Lee PJ, Leonard JV, Maire I et al.| title=The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. | journal=Eur J Hum Genet | year= 1999 | volume= 7 | issue= 6 | pages= 717-23 | pmid=10482962 | doi=10.1038/sj.ejhg.5200366 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10482962  }} </ref><ref name="pmid11071391">{{cite journal| author=Janecke AR, Lindner M, Erdel M, Mayatepek E, Möslinger D, Podskarbi T et al.| title=Mutation analysis in glycogen storage disease type 1 non-a. | journal=Hum Genet | year= 2000 | volume= 107 | issue= 3 | pages= 285-9 | pmid=11071391 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11071391  }} </ref>
===Metabolic pathway===
[[File:GSD TYPE I.png|center|800px|frame| Metabolic pathways showing defects in glycogen storage diseases type I, (ɔ) Image courtesy of WikiDoc.org, by '''"[[User:Anmol Pitliya|Dr. Anmol Pitliya]]"''']]
 
=== Mechanism of hypoglycemia ===
*[[Glucose-6-phosphatase|G6Pase]] is primarily expressed  in [[gluconeogenesis]] in the [[liver]] and [[kidney]]. It is also expressed to a lesser extent in the [[intestine]] and [[pancreas]].<ref name="pmid12373567">{{cite journal| author=Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP| title=Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S20-34 | pmid=12373567 | doi=10.1007/s00431-002-0999-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373567  }} </ref><ref name="pmid12618563">{{cite journal| author=Wolfsdorf JI, Weinstein DA| title=Glycogen storage diseases. | journal=Rev Endocr Metab Disord | year= 2003 | volume= 4 | issue= 1 | pages= 95-102 | pmid=12618563 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12618563  }} </ref>
*[[Glucose-6-phosphatase]] catalyzes the conversion of [[glucose-6-phosphate]] to [[glucose]] during [[glycogenolysis]] and [[gluconeogenesis]].
*[[4|This d]]<nowiki/>efects hinders the conversion of [[glucose-6-phosphate]] to [[glucose]] in [[organs]].
*This leads to accumulation of [[glycogen]] in organs including [[liver]], [[kidney]], and [[intestine]].
*The inability of [[glucose-6-phosphate]] to leave cells leads to severe fasting [[hypoglycemia]].
*This also results in the development of various secondary [[metabolic]] and [[biochemical]] abnormalities including hyperlactacidemia, [[hyperuricemia]], and [[hyperlipidemia]].
 
=== Mechanism of hyperuricemia ===
*[[Hyperuricemia]] in glycogen storage disease type 1 is due to:<ref name="pmid266162">{{cite journal| author=Roe TF, Kogut MD| title=The pathogenesis of hyperuricemia in glycogen storage disease, type I. | journal=Pediatr Res | year= 1977 | volume= 11 | issue= 5 | pages= 664-9 | pmid=266162 | doi=10.1203/00006450-197705000-00008 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=266162  }} </ref><ref name="pmid5225563">{{cite journal| author=Alepa FP, Howell RR, Klinenberg JR, Seegmiller JE| title=Relationships between glycogen storage disease and tophaceous gout. | journal=Am J Med | year= 1967 | volume= 42 | issue= 1 | pages= 58-66 | pmid=5225563 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5225563  }} </ref><ref name="pmid5224881">{{cite journal| author=Fine RN, Strauss J, Donnell GN| title=Hyperuricemia in glycogen-storage disease type 1. | journal=Am J Dis Child | year= 1966 | volume= 112 | issue= 6 | pages= 572-6 | pmid=5224881 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5224881  }} </ref><ref name="pmid6024734">{{cite journal| author=Jakovcic S, Sorensen LB| title=Studies of uric acid metabolism in glycogen storage disease associated with gouty arthritis. | journal=Arthritis Rheum | year= 1967 | volume= 10 | issue= 2 | pages= 129-34 | pmid=6024734 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6024734  }} </ref><ref name="KelleyRosenbloom1968">{{cite journal|last1=Kelley|first1=W.N.|last2=Rosenbloom|first2=F.M.|last3=Seegmiller|first3=J.E.|last4=Howell|first4=R. Rodney|title=Excessive production of uric acid in type I glycogen storage disease|journal=The Journal of Pediatrics|volume=72|issue=4|year=1968|pages=488–496|issn=00223476|doi=10.1016/S0022-3476(68)80339-7}}</ref><ref name="pmid2856925">{{cite journal| author=Cohen JL, Vinik A, Faller J, Fox IH| title=Hyperuricemia in glycogen storage disease type I. Contributions by hypoglycemia and hyperglucagonemia to increased urate production. | journal=J Clin Invest | year= 1985 | volume= 75 | issue= 1 | pages= 251-7 | pmid=2856925 | doi=10.1172/JCI111681 | pmc=423433 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2856925  }} </ref><ref name="pmid273863">{{cite journal| author=Benke PJ, Gold S| title=Uric acid metabolism in therapy of glycogen storage disease type I. | journal=Pediatr Res | year= 1978 | volume= 12 | issue= 3 | pages= 204-6 | pmid=273863 | doi=10.1203/00006450-197803000-00008 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=273863  }} </ref><ref name="Howell1965">{{cite journal|last1=Howell|first1=R. Rodney|title=The interrelationship of glycogen storage disease and gout|journal=Arthritis & Rheumatism|volume=8|issue=4|year=1965|pages=780–785|issn=00043591|doi=10.1002/art.1780080441}}</ref>
**Decrease [[uric acid]] [[excretion]]: High serum [[lactate]] and ketoacid levels cause a decrease in [[renal clearance]] of [[uric acid]].
**[[Uric acid]] overproduction


When [[digestion]] of a meal is complete, insulin levels fall, and enzyme systems in the liver cells begin to remove glucose molecules from strands of glycogen in the form of G6P. This process is termed [[glycogenolysis]]. The G6P remains within the liver cell unless the phosphate is cleaved by [[glucose-6-phosphatase]]. This [[dephosphorylation]] reaction produces free glucose and free PO<sub>4</sub> [[anion]]s. The free glucose molecules can be transported out of the liver cells into the blood to maintain an adequate supply of glucose to the [[brain]] and other organs of the body. Glycogenolysis can supply the glucose needs of an adult body for 12-18 hours.
===Hepatomegaly and liver disorders===
*Impairment of [[glycogenolysis]] leads to the accumulation of [[fat]] and [[glycogen]] deposition resulting in characteristic [[hepatomegaly]].
*[[Hepatomegaly]] is more pronounced when the child is young and decreases as the age progresses. The [[hepatomegaly]] leads to protrusion of the [[abdomen]].
*Patients with GSD type 1 may develop [[hepatic]] lesions including:<ref name="pmid12373567">{{cite journal| author=Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP| title=Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S20-34 | pmid=12373567 | doi=10.1007/s00431-002-0999-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373567  }} </ref><ref name="pmid15877204">{{cite journal| author=Franco LM, Krishnamurthy V, Bali D, Weinstein DA, Arn P, Clary B et al.| title=Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. | journal=J Inherit Metab Dis | year= 2005 | volume= 28 | issue= 2 | pages= 153-62 | pmid=15877204 | doi=10.1007/s10545-005-7500-2 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15877204  }} </ref><ref name="pmid17637480">{{cite journal| author=Reddy SK, Kishnani PS, Sullivan JA, Koeberl DD, Desai DM, Skinner MA et al.| title=Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia. | journal=J Hepatol | year= 2007 | volume= 47 | issue= 5 | pages= 658-63 | pmid=17637480 | doi=10.1016/j.jhep.2007.05.012 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17637480  }} </ref><ref name="pmid11211215">{{cite journal| author=Kudo M| title=Hepatocellular adenoma in type Ia glycogen storage disease. | journal=J Gastroenterol | year= 2001 | volume= 36 | issue= 1 | pages= 65-6 | pmid=11211215 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11211215  }} </ref><ref name="pmid11428803">{{cite journal| author=Kelly PM, Poon FW| title=Hepatic tumours in glycogen storage disease type 1 (von Gierke's disease). | journal=Clin Radiol | year= 2001 | volume= 56 | issue= 6 | pages= 505-8 | pmid=11428803 | doi=10.1053/crad.2000.0457 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11428803  }} </ref><ref name="pmid12373570">{{cite journal| author=Lee PJ| title=Glycogen storage disease type I: pathophysiology of liver adenomas. | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S46-9 | pmid=12373570 | doi=10.1007/s00431-002-1002-0 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373570  }} </ref>
**[[Hepatocellular adenoma]] (most common)
**[[Hepatocellular carcinoma]]
**[[Hepatoblastoma]]
**Focal [[fatty infiltration]]
**Focal fatty sparing
**[[Focal nodular hyperplasia]]
**[[Peliosis hepatis]]
*The [[prevalence]] of [[hepatocellular adenoma]] increases as the age progress. 70 - 80 % Patients have at least one lesion of [[hepatocellular adenoma]] by the time they reach the age of 25 years.


When fasting continues for more than a few hours, falling insulin levels permit [[catabolism]] of [[muscle]] protein and triglycerides from adipose tissue. The products of these processes are [[amino acid]]s (mainly [[alanine]]), [[free fatty acid]]s, and [[lactic acid]]. Free fatty acids from triglycerides are converted to [[ketone]]s, and to [[acetyl-CoA]]. Amino acids and lactic acid are used to synthesize new G6P in liver cells by the process of [[gluconeogenesis]]. The last step of normal gluconeogenesis, like the last step of glycogenolysis, is the dephosphorylation of G6P by glucose-6-phosphatase to free glucose and PO<sub>4</sub>.
===Renal disorders===
*Patients with GSD type 1 have [[renal]] manifestations early in childhood.<ref name="pmid8319728">{{cite journal| author=Reitsma-Bierens WC| title=Renal complications in glycogen storage disease type I. | journal=Eur J Pediatr | year= 1993 | volume= 152 Suppl 1 | issue=  | pages= S60-2 | pmid=8319728 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8319728  }} </ref>
*[[Glycogen]] deposits in [[kidneys]] leading to [[nephromegaly]], which is usually detected by [[imaging techniques]].<ref name="pmid1616830">{{cite journal| author=Reitsma-Bierens WC, Smit GP, Troelstra JA| title=Renal function and kidney size in glycogen storage disease type I. | journal=Pediatr Nephrol | year= 1992 | volume= 6 | issue= 3 | pages= 236-8 | pmid=1616830 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1616830  }} </ref><ref name="pmid3422104">{{cite journal| author=Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB| title=Renal disease in type I glycogen storage disease. | journal=N Engl J Med | year= 1988 | volume= 318 | issue= 1 | pages= 7-11 | pmid=3422104 | doi=10.1056/NEJM198801073180102 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3422104  }} </ref>
*There is a progressive decrease in [[urinary]] [[citrate]] [[excretion]] as the age increases. [[Hypocitraturia]] along with [[hypercalciuria]] leads to [[nephrolithiasis]] and [[nephrocalcinosis]].<ref name="pmid11241046">{{cite journal| author=Weinstein DA, Somers MJ, Wolfsdorf JI| title=Decreased urinary citrate excretion in type 1a glycogen storage disease. | journal=J Pediatr | year= 2001 | volume= 138 | issue= 3 | pages= 378-82 | pmid=11241046 | doi=10.1067/mpd.2001.111322 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11241046  }} </ref><ref name="pmid8747109">{{cite journal| author=Lee PJ, Dalton RN, Shah V, Hindmarsh PC, Leonard JV| title=Glomerular and tubular function in glycogen storage disease. | journal=Pediatr Nephrol | year= 1995 | volume= 9 | issue= 6 | pages= 705-10 | pmid=8747109 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8747109  }} </ref><ref name="pmid8441093">{{cite journal| author=Restaino I, Kaplan BS, Stanley C, Baker L| title=Nephrolithiasis, hypocitraturia, and a distal renal tubular acidification defect in type 1 glycogen storage disease. | journal=J Pediatr | year= 1993 | volume= 122 | issue= 3 | pages= 392-6 | pmid=8441093 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8441093  }} </ref>
*[[Glycogen]] storage and [[metabolic]] disturbances in patients with GSD type 1 leads to progressive [[glomerular injury]] and finally end-stage renal disease requiring [[renal transplantation]].


Thus glucose-6-phosphatase mediates the final, key, step in both of the two main processes of glucose production during fasting. In fact the effect is amplified because the resulting high levels of glucose-6-phosphate inhibit earlier key steps in both glycogenolysis and gluconeogenesis.
===Hematologic Disorders===
====Anemia====
*[[Anemia]] in GSD type 1 is due to an array of factors including:<ref name="KishnaniAustin2014">{{cite journal|last1=Kishnani|first1=Priya S.|last2=Austin|first2=Stephanie L.|last3=Abdenur|first3=Jose E.|last4=Arn|first4=Pamela|last5=Bali|first5=Deeksha S.|last6=Boney|first6=Anne|last7=Chung|first7=Wendy K.|last8=Dagli|first8=Aditi I.|last9=Dale|first9=David|last10=Koeberl|first10=Dwight|last11=Somers|first11=Michael J.|last12=Burns Wechsler|first12=Stephanie|last13=Weinstein|first13=David A.|last14=Wolfsdorf|first14=Joseph I.|last15=Watson|first15=Michael S.|title=Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics|journal=Genetics in Medicine|year=2014|issn=1098-3600|doi=10.1038/gim.2014.128}}</ref><ref name="pmid22678084">{{cite journal| author=Wang DQ, Carreras CT, Fiske LM, Austin S, Boree D, Kishnani PS et al.| title=Characterization and pathogenesis of anemia in glycogen storage disease type Ia and Ib. | journal=Genet Med | year= 2012 | volume= 14 | issue= 9 | pages= 795-9 | pmid=22678084 | doi=10.1038/gim.2012.41 | pmc=3808879 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22678084  }} </ref>
**The restricted nature of the diet
**Chronic [[lactic acidosis]]
**[[Renal]] disorders
**[[Bleeding diathesis]]
**Chronic nature of the illness
**Suboptimal metabolic control
**[[Hepatic adenomas]]
**[[Inflammatory bowel disease]] (specifically  in GSD type 1b)
*Abnormal expression of [[hepcidin]] in GSD type 1 leads to refractory [[iron deficiency anemia]].<ref name="pmid12393428">{{cite journal| author=Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC| title=Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. | journal=Blood | year= 2002 | volume= 100 | issue= 10 | pages= 3776-81 | pmid=12393428 | doi=10.1182/blood-2002-04-1260 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12393428  }} </ref>
*In GSD type 1b associated with [[inflammatory bowel disease]] is believed to be due to [[Interleukin-6]]. Increased expression of [[Interleukin-6]] due to [[inflammation]] leads to [[upregulation]] of [[hepcidin]] leading to [[anemia]].


===Pathophysiology of the metabolic effects of glucose-6-phosphatase deficiency===
====Bleeding diathesis====
The principal metabolic effects of deficiency of glucose-6-phosphatase are:
*[[Bleeding diathesis]] in GSD type 1 secondary to metabolic abnormalities and include:<ref name="pmid4350560">{{cite journal| author=Czapek EE, Deykin D, Salzman EW| title=Platelet dysfunction in glycogen storage disease type I. | journal=Blood | year= 1973 | volume= 41 | issue= 2 | pages= 235-47 | pmid=4350560 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4350560  }} </ref><ref name="pmid4212074">{{cite journal| author=Corby DG, Putnam CW, Greene HL| title=Impaired platelet function in glucose-6-phosphatase deficiency. | journal=J Pediatr | year= 1974 | volume= 85 | issue= 1 | pages= 71-6 | pmid=4212074 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4212074  }} </ref><ref name="pmid942229">{{cite journal| author=Hutton RA, Macnab AJ, Rivers RP| title=Defect of platelet function associated with chronic hypoglycaemia. | journal=Arch Dis Child | year= 1976 | volume= 51 | issue= 1 | pages= 49-55 | pmid=942229 | doi= | pmc=1545862 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=942229  }} </ref>
*[[Hypoglycemia]]
*Acquired [[platelet]] dysfunction with [[Bleeding time|prolonged bleeding times]]
*[[Lactic acidosis]]
*Decreased [[platelet]] adhesiveness
*[[Hypertriglyceridemia]]
*Abnormal aggregation of [[platelets]]
*[[Hyperuricemia]]


The '''hypoglycemia''' of GSD I is termed "fasting", or "post-absorptive", meaning that it occurs after completion of digestion of a meal-- usually about 4 hours later. This inability to maintain adequate blood glucose levels during fasting results from the combined impairment of both [[glycogenolysis]] and [[gluconeogenesis]]. Fasting hypoglycemia is often the most significant problem in GSD I, and typically the problem that leads to the diagnosis. Chronic hypoglycemia produces secondary metabolic adaptations, including chronically low [[insulin]] levels and high levels of [[glucagon]] and [[cortisol]].
====Neutropenia and neutrophil dysfunction====
*[[Neutropenia]] and [[neutrophil]] dysfunction is specific of GSD type 1b.<ref name="pmid12373578">{{cite journal| author=Visser G, Rake JP, Labrune P, Leonard JV, Moses S, Ullrich K et al.| title=Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S83-7 | pmid=12373578 | doi=10.1007/s00431-002-1010-0 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373578  }} </ref>
*[[Neutropenia]] and [[neutrophil]] dysfunction in glycogen storage disease type Ib is thought to be due to loss of [[glucose-6-phosphate]] [[translocase]] activity leading to:<ref name="pmid19741523">{{cite journal| author=Chou JY, Jun HS, Mansfield BC| title=Neutropenia in type Ib glycogen storage disease. | journal=Curr Opin Hematol | year= 2010 | volume= 17 | issue= 1 | pages= 36-42 | pmid=19741523 | doi=10.1097/MOH.0b013e328331df85 | pmc=3099242 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19741523  }} </ref>
**Enhanced [[endoplasmic reticulum]] stress
**[[Oxidative stress]]
**[[Apoptosis]] of [[neutrophils]]
*Patients with GSD type 1b associated with [[neutropenia]] are at increased risk of:<ref name="pmid8975948">{{cite journal| author=Franceschini R, Gianetta E, Pastorino A, Dallegri F, Cataldi A, Corsini G et al.| title=Crohn's-like colitis in glycogen storage disease Ib: a case report. | journal=Hepatogastroenterology | year= 1996 | volume= 43 | issue= 12 | pages= 1461-4 | pmid=8975948 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8975948  }} </ref><ref name="pmid12373579">{{cite journal| author=Dieckgraefe BK, Korzenik JR, Husain A, Dieruf L| title=Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. | journal=Eur J Pediatr | year= 2002 | volume= 161 Suppl 1 | issue=  | pages= S88-92 | pmid=12373579 | doi=10.1007/s00431-002-1011-z | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12373579  }} </ref>
**[[Infections]]
**[[Gingivitis]]
**[[Mouth ulcers]]
**[[Upper respiratory infection|Upper respiratory infections]]
**[[Deep abscess|Deep abscesses]]
**[[Enterocolitis]]
*Also, there is dysfunction of monocytes leads to:<ref name="pmid2164043">{{cite journal| author=Kilpatrick L, Garty BZ, Lundquist KF, Hunter K, Stanley CA, Baker L et al.| title=Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. | journal=J Clin Invest | year= 1990 | volume= 86 | issue= 1 | pages= 196-202 | pmid=2164043 | doi=10.1172/JCI114684 | pmc=296707 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2164043  }} </ref>
**[[Granuloma]] formation
**[[Chronic inflammation|Chronic inflammatory responses]]


'''Lactic acidosis''' arises from impairment of gluconeogenesis. Lactic acid is generated both in the liver and muscle and is oxidized by NAD<sup>+</sup> to [[pyruvic acid]] and then converted via the gluconeogenenic pathway to G6P. Accumulation of G6P inhibits conversion of lactate to pyruvate. The lactic acid level rises during fasting as glucose falls. In people with GSD I, it may not fall entirely to normal even when normal glucose levels are restored.
==Genetics==
*80% Cases of GSD 1 are of GSD type 1a.<ref name="pmid10322403">{{cite journal| author=Mansfield BC| title=Molecular Genetics of Type 1 Glycogen Storage Diseases. | journal=Trends Endocrinol Metab | year= 1999 | volume= 10 | issue= 3 | pages= 104-113 | pmid=10322403 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10322403  }} </ref>
*[[G6PC]] [[gene mutation]] is responsible for [[Glucose-1-phosphatase]] deficiency in GSD type 1a and is located on [[chromosome]] locus 17q21.<ref name="pmid18449899">{{cite journal| author=Chou JY, Mansfield BC| title=Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. | journal=Hum Mutat | year= 2008 | volume= 29 | issue= 7 | pages= 921-30 | pmid=18449899 | doi=10.1002/humu.20772 | pmc=2475600 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18449899  }} </ref>
*[[SLC37A4]] [[gene mutation]] is responsible for [[Glucose-6-phosphate]] [[translocase]] defect in GSD type 1b and is located on [[chromosome]] locus 11q23.<ref name="pmid9758626">{{cite journal| author=Veiga-da-Cunha M, Gerin I, Chen YT, de Barsy T, de Lonlay P, Dionisi-Vici C et al.| title=A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. | journal=Am J Hum Genet | year= 1998 | volume= 63 | issue= 4 | pages= 976-83 | pmid=9758626 | doi=10.1086/302068 | pmc=1377500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9758626  }} </ref><ref name="pmid11071391">{{cite journal| author=Janecke AR, Lindner M, Erdel M, Mayatepek E, Möslinger D, Podskarbi T et al.| title=Mutation analysis in glycogen storage disease type 1 non-a. | journal=Hum Genet | year= 2000 | volume= 107 | issue= 3 | pages= 285-9 | pmid=11071391 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11071391  }} </ref>
*GSD type 1 follows an [[autosomal recessive]] pattern.


'''Hypertriglyceridemia''' resulting from amplified triglyceride production is another indirect effect of impaired gluconeogenesis, amplified by chronically low insulin levels. During fasting, the normal conversion of triglycerides to free fatty acids, [[ketones]], and ultimately glucose is impaired. Triglyceride levels in GSD I can reach several times normal and serve as a clinical index of "metabolic control".
==Gross Pathology==
On gross pathology analysis, the features of glycogen storage disease type 1 include [[hepatomegaly]]. [[Hepatomegaly]] decreases as age increases.<ref name="KishnaniAustin2014">{{cite journal|last1=Kishnani|first1=Priya S.|last2=Austin|first2=Stephanie L.|last3=Abdenur|first3=Jose E.|last4=Arn|first4=Pamela|last5=Bali|first5=Deeksha S.|last6=Boney|first6=Anne|last7=Chung|first7=Wendy K.|last8=Dagli|first8=Aditi I.|last9=Dale|first9=David|last10=Koeberl|first10=Dwight|last11=Somers|first11=Michael J.|last12=Burns Wechsler|first12=Stephanie|last13=Weinstein|first13=David A.|last14=Wolfsdorf|first14=Joseph I.|last15=Watson|first15=Michael S.|title=Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics|journal=Genetics in Medicine|year=2014|issn=1098-3600|doi=10.1038/gim.2014.128}}</ref>


'''Hyperuricemia''' results from a combination of increased generation and decreased excretion of [[uric acid]], which is generated when increased amounts of G6P are metabolized via the [[pentose phosphate pathway]]. It is also a byproduct of [[purine]] degradation. Uric acid competes with lactic acid and other organic acids for renal excretion in the urine. In GSD I increased availability of G6P for the pentose phosphate pathway, increased rates of catabolism, and diminished urinary excretion due to high levels of lactic acid all combine to produce uric acid levels several times normal. Although hyperuricemia is asymptomatic for years, kidney and joint damage gradually accrue.
==Microscopic Pathology==
*On microscopic histopathological analysis, the features of glycogen storage disease type 1 include:<ref name="pmid21599942">{{cite journal| author=Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A et al.| title=Glucose-6-phosphatase deficiency. | journal=Orphanet J Rare Dis | year= 2011 | volume= 6 | issue=  | pages= 27 | pmid=21599942 | doi=10.1186/1750-1172-6-27 | pmc=3118311 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21599942  }} </ref><ref name="pmid17552001">{{cite journal| author=Ozen H| title=Glycogen storage diseases: new perspectives. | journal=World J Gastroenterol | year= 2007 | volume= 13 | issue= 18 | pages= 2541-53 | pmid=17552001 | doi= | pmc=4146814 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17552001  }} </ref><ref>Bali DS, Chen YT, Austin S, et al. Glycogen Storage Disease Type I. 2006 Apr 19 [Updated 2016 Aug 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1312/</ref>
**Distended [[liver cells]] by [[glycogen]] and [[fat]]
**[[PAS]] positive and [[diastase]] sensitive [[glycogen]] distributed uniformly within the [[cytoplasm]]
**Normal or mildly increased [[glycogen]] as compared with that seen in other liver [[Glycogen storage disease|GSDs]] (especially GSDIII and GSDIX)
**Large and numerous [[lipid]] [[vacuoles]]
**No [[fibrosis]] and [[cirrhosis]] is present


==References==
==References==
{{reflist|2}}
{{reflist|2}}
{{WH}}
{{WS}}
[[Category:Endocrinology]]
[[Category:Endocrinology]]
[[Category:Genetic disorders]]
[[Category:Hepatology]]
[[Category:Hepatology]]
[[Category:Inborn errors of metabolism]]
[[Category:Gastroenterology]]
[[Category:Gastroenterology]]
[[Category:Pediatrics]]
[[Category:Up-To-Date]]
[[Category:Genetic disorders]]
[[Category:Metabolic disorders]]
[[Category:Metabolic disorders]]
[[Caterogy:Mature chapter]]
 
{{WS}}
{{WH}}
<references />

Latest revision as of 14:24, 29 March 2018

Glycogen storage disease type I Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Glycogen storage disease type I from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Glycogen storage disease type I pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Glycogen storage disease type I pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Glycogen storage disease type I pathophysiology

CDC on Glycogen storage disease type I pathophysiology

Glycogen storage disease type I pathophysiology in the news

Blogs on Glycogen storage disease type I pathophysiology

Directions to Hospitals Treating Glycogen storage disease type I

Risk calculators and risk factors for Glycogen storage disease type I pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Anmol Pitliya, M.B.B.S. M.D.[2]

Overview

Glycogen storage disease type 1 (GSD 1) results due to defects in either hydrolysis or transport of glucose-6-phosphate. Glucose-6-phosphatase catalyzes the conversion of glucose-6-phosphate to glucose during glycogenolysis and gluconeogenesis. The inability of glucose-6-phosphate to leave cells leads to severe fasting hypoglycemia. Impairment of glycogenolysis leads to the accumulation of fat and glycogen deposition resulting in characteristic hepatomegaly. Glycogen also deposits in kidneys leading to nephromegaly, which is usually detected by imaging techniques. Hematologic disorders in GSD type 1 include anemia, bleeding diathesis, and neutropenia. Neutropenia and neutrophil dysfunction is specific of GSD type 1b. Abnormal expression of hepcidin in GSD type 1 leads to refractory iron deficiency anemia. GSD type 1 follows an autosomal recessive pattern. On gross pathology analysis, the features of glycogen storage disease type 1 include hepatomegaly. Hepatomegaly decreases as age increases. On microscopic histopathological analysis, the features of glycogen storage disease type 1 include distended liver cells by glycogen and fat, PAS positive and diastase sensitive glycogen distributed uniformly within the cytoplasm, and numerous large lipid vacuoles.

Pathophysiology

Metabolic pathway

Metabolic pathways showing defects in glycogen storage diseases type I, (ɔ) Image courtesy of WikiDoc.org, by "Dr. Anmol Pitliya"

Mechanism of hypoglycemia

Mechanism of hyperuricemia

Hepatomegaly and liver disorders

Renal disorders

Hematologic Disorders

Anemia

Bleeding diathesis

Neutropenia and neutrophil dysfunction

Genetics

Gross Pathology

On gross pathology analysis, the features of glycogen storage disease type 1 include hepatomegaly. Hepatomegaly decreases as age increases.[2]

Microscopic Pathology

References

  1. Moses SW (2002). "Historical highlights and unsolved problems in glycogen storage disease type 1". Eur J Pediatr. 161 Suppl 1: S2–9. doi:10.1007/s00431-002-0997-6. PMID 12373565.
  2. 2.0 2.1 2.2 Kishnani, Priya S.; Austin, Stephanie L.; Abdenur, Jose E.; Arn, Pamela; Bali, Deeksha S.; Boney, Anne; Chung, Wendy K.; Dagli, Aditi I.; Dale, David; Koeberl, Dwight; Somers, Michael J.; Burns Wechsler, Stephanie; Weinstein, David A.; Wolfsdorf, Joseph I.; Watson, Michael S. (2014). "Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics". Genetics in Medicine. doi:10.1038/gim.2014.128. ISSN 1098-3600.
  3. 3.0 3.1 Chou JY, Mansfield BC (2008). "Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease". Hum Mutat. 29 (7): 921–30. doi:10.1002/humu.20772. PMC 2475600. PMID 18449899.
  4. Veiga-da-Cunha M, Gerin I, Chen YT, Lee PJ, Leonard JV, Maire I; et al. (1999). "The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a". Eur J Hum Genet. 7 (6): 717–23. doi:10.1038/sj.ejhg.5200366. PMID 10482962.
  5. 5.0 5.1 Janecke AR, Lindner M, Erdel M, Mayatepek E, Möslinger D, Podskarbi T; et al. (2000). "Mutation analysis in glycogen storage disease type 1 non-a". Hum Genet. 107 (3): 285–9. PMID 11071391.
  6. 6.0 6.1 Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP (2002). "Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I)". Eur J Pediatr. 161 Suppl 1: S20–34. doi:10.1007/s00431-002-0999-4. PMID 12373567.
  7. Wolfsdorf JI, Weinstein DA (2003). "Glycogen storage diseases". Rev Endocr Metab Disord. 4 (1): 95–102. PMID 12618563.
  8. Roe TF, Kogut MD (1977). "The pathogenesis of hyperuricemia in glycogen storage disease, type I." Pediatr Res. 11 (5): 664–9. doi:10.1203/00006450-197705000-00008. PMID 266162.
  9. Alepa FP, Howell RR, Klinenberg JR, Seegmiller JE (1967). "Relationships between glycogen storage disease and tophaceous gout". Am J Med. 42 (1): 58–66. PMID 5225563.
  10. Fine RN, Strauss J, Donnell GN (1966). "Hyperuricemia in glycogen-storage disease type 1". Am J Dis Child. 112 (6): 572–6. PMID 5224881.
  11. Jakovcic S, Sorensen LB (1967). "Studies of uric acid metabolism in glycogen storage disease associated with gouty arthritis". Arthritis Rheum. 10 (2): 129–34. PMID 6024734.
  12. Kelley, W.N.; Rosenbloom, F.M.; Seegmiller, J.E.; Howell, R. Rodney (1968). "Excessive production of uric acid in type I glycogen storage disease". The Journal of Pediatrics. 72 (4): 488–496. doi:10.1016/S0022-3476(68)80339-7. ISSN 0022-3476.
  13. Cohen JL, Vinik A, Faller J, Fox IH (1985). "Hyperuricemia in glycogen storage disease type I. Contributions by hypoglycemia and hyperglucagonemia to increased urate production". J Clin Invest. 75 (1): 251–7. doi:10.1172/JCI111681. PMC 423433. PMID 2856925.
  14. Benke PJ, Gold S (1978). "Uric acid metabolism in therapy of glycogen storage disease type I." Pediatr Res. 12 (3): 204–6. doi:10.1203/00006450-197803000-00008. PMID 273863.
  15. Howell, R. Rodney (1965). "The interrelationship of glycogen storage disease and gout". Arthritis & Rheumatism. 8 (4): 780–785. doi:10.1002/art.1780080441. ISSN 0004-3591.
  16. Franco LM, Krishnamurthy V, Bali D, Weinstein DA, Arn P, Clary B; et al. (2005). "Hepatocellular carcinoma in glycogen storage disease type Ia: a case series". J Inherit Metab Dis. 28 (2): 153–62. doi:10.1007/s10545-005-7500-2. PMID 15877204.
  17. Reddy SK, Kishnani PS, Sullivan JA, Koeberl DD, Desai DM, Skinner MA; et al. (2007). "Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia". J Hepatol. 47 (5): 658–63. doi:10.1016/j.jhep.2007.05.012. PMID 17637480.
  18. Kudo M (2001). "Hepatocellular adenoma in type Ia glycogen storage disease". J Gastroenterol. 36 (1): 65–6. PMID 11211215.
  19. Kelly PM, Poon FW (2001). "Hepatic tumours in glycogen storage disease type 1 (von Gierke's disease)". Clin Radiol. 56 (6): 505–8. doi:10.1053/crad.2000.0457. PMID 11428803.
  20. Lee PJ (2002). "Glycogen storage disease type I: pathophysiology of liver adenomas". Eur J Pediatr. 161 Suppl 1: S46–9. doi:10.1007/s00431-002-1002-0. PMID 12373570.
  21. Reitsma-Bierens WC (1993). "Renal complications in glycogen storage disease type I." Eur J Pediatr. 152 Suppl 1: S60–2. PMID 8319728.
  22. Reitsma-Bierens WC, Smit GP, Troelstra JA (1992). "Renal function and kidney size in glycogen storage disease type I." Pediatr Nephrol. 6 (3): 236–8. PMID 1616830.
  23. Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB (1988). "Renal disease in type I glycogen storage disease". N Engl J Med. 318 (1): 7–11. doi:10.1056/NEJM198801073180102. PMID 3422104.
  24. Weinstein DA, Somers MJ, Wolfsdorf JI (2001). "Decreased urinary citrate excretion in type 1a glycogen storage disease". J Pediatr. 138 (3): 378–82. doi:10.1067/mpd.2001.111322. PMID 11241046.
  25. Lee PJ, Dalton RN, Shah V, Hindmarsh PC, Leonard JV (1995). "Glomerular and tubular function in glycogen storage disease". Pediatr Nephrol. 9 (6): 705–10. PMID 8747109.
  26. Restaino I, Kaplan BS, Stanley C, Baker L (1993). "Nephrolithiasis, hypocitraturia, and a distal renal tubular acidification defect in type 1 glycogen storage disease". J Pediatr. 122 (3): 392–6. PMID 8441093.
  27. Wang DQ, Carreras CT, Fiske LM, Austin S, Boree D, Kishnani PS; et al. (2012). "Characterization and pathogenesis of anemia in glycogen storage disease type Ia and Ib". Genet Med. 14 (9): 795–9. doi:10.1038/gim.2012.41. PMC 3808879. PMID 22678084.
  28. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC (2002). "Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease". Blood. 100 (10): 3776–81. doi:10.1182/blood-2002-04-1260. PMID 12393428.
  29. Czapek EE, Deykin D, Salzman EW (1973). "Platelet dysfunction in glycogen storage disease type I." Blood. 41 (2): 235–47. PMID 4350560.
  30. Corby DG, Putnam CW, Greene HL (1974). "Impaired platelet function in glucose-6-phosphatase deficiency". J Pediatr. 85 (1): 71–6. PMID 4212074.
  31. Hutton RA, Macnab AJ, Rivers RP (1976). "Defect of platelet function associated with chronic hypoglycaemia". Arch Dis Child. 51 (1): 49–55. PMC 1545862. PMID 942229.
  32. Visser G, Rake JP, Labrune P, Leonard JV, Moses S, Ullrich K; et al. (2002). "Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1". Eur J Pediatr. 161 Suppl 1: S83–7. doi:10.1007/s00431-002-1010-0. PMID 12373578.
  33. Chou JY, Jun HS, Mansfield BC (2010). "Neutropenia in type Ib glycogen storage disease". Curr Opin Hematol. 17 (1): 36–42. doi:10.1097/MOH.0b013e328331df85. PMC 3099242. PMID 19741523.
  34. Franceschini R, Gianetta E, Pastorino A, Dallegri F, Cataldi A, Corsini G; et al. (1996). "Crohn's-like colitis in glycogen storage disease Ib: a case report". Hepatogastroenterology. 43 (12): 1461–4. PMID 8975948.
  35. Dieckgraefe BK, Korzenik JR, Husain A, Dieruf L (2002). "Association of glycogen storage disease 1b and Crohn disease: results of a North American survey". Eur J Pediatr. 161 Suppl 1: S88–92. doi:10.1007/s00431-002-1011-z. PMID 12373579.
  36. Kilpatrick L, Garty BZ, Lundquist KF, Hunter K, Stanley CA, Baker L; et al. (1990). "Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b". J Clin Invest. 86 (1): 196–202. doi:10.1172/JCI114684. PMC 296707. PMID 2164043.
  37. Mansfield BC (1999). "Molecular Genetics of Type 1 Glycogen Storage Diseases". Trends Endocrinol Metab. 10 (3): 104–113. PMID 10322403.
  38. Veiga-da-Cunha M, Gerin I, Chen YT, de Barsy T, de Lonlay P, Dionisi-Vici C; et al. (1998). "A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic". Am J Hum Genet. 63 (4): 976–83. doi:10.1086/302068. PMC 1377500. PMID 9758626.
  39. Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A; et al. (2011). "Glucose-6-phosphatase deficiency". Orphanet J Rare Dis. 6: 27. doi:10.1186/1750-1172-6-27. PMC 3118311. PMID 21599942.
  40. Ozen H (2007). "Glycogen storage diseases: new perspectives". World J Gastroenterol. 13 (18): 2541–53. PMC 4146814. PMID 17552001.
  41. Bali DS, Chen YT, Austin S, et al. Glycogen Storage Disease Type I. 2006 Apr 19 [Updated 2016 Aug 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1312/

Template:WS Template:WH