Eosinophilic esophagitis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 3: Line 3:


==Overview==
==Overview==
* The [[pathophysiology]] of the [[Eosinophilic esophagitis|EoE]] is as follows:<ref name="pmid25499460">{{cite journal |vauthors=Malhotra N, Levine J |title=Eosinophilic esophagitis: an autoimmune esophageal disorder |journal=Curr Probl Pediatr Adolesc Health Care |volume=44 |issue=11 |pages=335–40 |year=2014 |pmid=25499460 |doi=10.1016/j.cppeds.2014.10.004 |url=}}</ref><ref name="pmid26051952">{{cite journal |vauthors=Martin LJ, Franciosi JP, Collins MH, Abonia JP, Lee JJ, Hommel KA, Varni JW, Grotjan JT, Eby M, He H, Marsolo K, Putnam PE, Garza JM, Kaul A, Wen T, Rothenberg ME |title=Pediatric Eosinophilic Esophagitis Symptom Scores (PEESS v2.0) identify histologic and molecular correlates of the key clinical features of disease |journal=J. Allergy Clin. Immunol. |volume=135 |issue=6 |pages=1519–28.e8 |year=2015 |pmid=26051952 |pmc=4460579 |doi=10.1016/j.jaci.2015.03.004 |url=}}</ref><ref name="pmid25216976">{{cite journal |vauthors=Lucendo AJ, Arias A, Tenias JM |title=Relation between eosinophilic esophagitis and oral immunotherapy for food allergy: a systematic review with meta-analysis |journal=Ann. Allergy Asthma Immunol. |volume=113 |issue=6 |pages=624–9 |year=2014 |pmid=25216976 |doi=10.1016/j.anai.2014.08.004 |url=}}</ref><ref name="pmid22939463">{{cite journal |vauthors=López-Colombo A |title=[Eosinophilic esophagitis] |language=Spanish; Castilian |journal=Rev Gastroenterol Mex |volume=77 Suppl 1 |issue= |pages=1–3 |year=2012 |pmid=22939463 |doi=10.1016/j.rgmx.2012.07.002 |url=}}</ref><ref name="pmid24117638">{{cite journal |vauthors=Chehade M, Lucendo AJ, Achem SR, Souza RF |title=Causes, evaluation, and consequences of eosinophilic esophagitis |journal=Ann. N. Y. Acad. Sci. |volume=1300 |issue= |pages=110–8 |year=2013 |pmid=24117638 |doi=10.1111/nyas.12243 |url=}}</ref><ref name="pmid23797116">{{cite journal |vauthors=Straumann A |title=Eosinophilic esophagitis: a bulk of mysteries |journal=Dig Dis |volume=31 |issue=1 |pages=6–9 |year=2013 |pmid=23797116 |doi=10.1159/000347095 |url=}}</ref><ref name="pmid22307811">{{cite journal |vauthors=Straumann A |title=Eosinophilic esophagitis: rapidly emerging disorder |journal=Swiss Med Wkly |volume=142 |issue= |pages=w13513 |year=2012 |pmid=22307811 |doi=10.4414/smw.2012.13513 |url=}}</ref><ref name="pmid21429051">{{cite journal |vauthors=Schoepfer AM, Simon D, Straumann A |title=Eosinophilic oesophagitis: latest intelligence |journal=Clin. Exp. Allergy |volume=41 |issue=5 |pages=630–9 |year=2011 |pmid=21429051 |doi=10.1111/j.1365-2222.2011.03739.x |url=}}</ref><ref name="pmid21987875">{{cite journal |vauthors=Godat S, Moradpour D, Schoepfer A |title=[Eosinophilic esophagitis: update 2011] |language=French |journal=Rev Med Suisse |volume=7 |issue=307 |pages=1678–80, 1682 |year=2011 |pmid=21987875 |doi= |url=}}</ref><ref name="pmid14997131">{{cite journal |vauthors=Potter JW, Saeian K, Staff D, Massey BT, Komorowski RA, Shaker R, Hogan WJ |title=Eosinophilic esophagitis in adults: an emerging problem with unique esophageal features |journal=Gastrointest. Endosc. |volume=59 |issue=3 |pages=355–61 |year=2004 |pmid=14997131 |doi= |url=}}</ref>
[[Eosinophilic esophagitis]] is an immunoallergic disorder resulting from the interaction between genetics and environmental triggers such as repeated exposure to food and aeroallergens. Patients presenting with [[Eosinophilic esophagitis|EoE]] have a history of elevated [[serum]] [[Immunoglobulin E|IgE]] levels, response to interventions such as diet restriction, history of food [[hypersensitivity]]. [[Eosinophils]] originate from CD34+ [[myeloid]] precursor cells in the [[bone marrow]], mature to a granulated state and migrate to [[vascular]] spaces. The [[eosinophils]] are absent in an otherwise normal [[esophagus]], the presence of the [[eosinophils]] in the [[esophagus]] suggests [[GERD]] or [[EoE]]. They tend to be present in all layers of the [[esophagus]] in [[Eosinophilic esophagitis|EoE]], but predominate in the [[lamina propria]] and [[Submucosa|submucosal]] regions. The documented [[cytokine]] expression profile in the [[esophageal]] [[tissue]] of [[EoE]] patients is that of a [[T helper cell|TH2]] [[inflammatory]] response. [[IL-5]] and [[Interleukin 13|IL-13]] are produced by the type-2 helper T cells ([[Th2]]) in response to the [[antigenic]] [[proteins]] from the [[food]] or [[inhalation]]. [[IL-13]] further stimulates the [[epithelial]] cells of the [[esophagus]] to produce large proteins to induce a gene called eotaxin-3, which in turn recruits [[eosinophils]] from the peripheral blood into the tissue. [[IL-5]] prolongs the survival of the [[eosinophils]]. The activated [[TH2-cells|TH2]] response leads to the recruitment and activation of [[Mast cells]] [[degranulate]] and cause tissue damage and repair. [[Cytokines]] produced by TH-1 cells are [[Tumour necrosis factor|tumor necrosis factor]] (TNF)-α, Interferon (IFN)-γ, [[TNF-α]] is expressed by the [[epithelial cells]] of the [[esophagus]] whereas the INF-γ is upregulated by the [[Peripheral T cells lymphoma|peripheral T cells.]] Delayed or type- IV [[hypersensitivity]] is the mechanism is involved in the [[Eosinophilic esophagitis|EoE]] rather than the non-IgE. It is postulated that the [[EoE]]-defining [[endoscopic]] and [[histologic]] manifestations are a culmination of the disease process which, may have debilitating long-term effects including [[strictures]] and food impactions in untreated or poorly managed cases of [[EoE]]. CD34+ [[myeloid]] precursor cells in the [[bone marrow]] produce [[eosinophils]] and then the [[eosinophils]] develop granulation and migrate to [[vascular]] spaces. [[Eosinophils]] although present in all the layers of the [[esophagus]] in patients with [[EoE]], they are predominant in the lamina propria and [[submucosa]] of the [[esophagus]]. The preformed [[granule]] [[proteins]] of the [[eosinophils]] are ECP- Eosinophil Cationic Protein, MBP- [[Major basic protein|Major Basic Protein]], EPO- Eosinophil [[Peroxidase]], EDN- [[Eosinophil]] Derived [[Neurotoxin]]. Upon the stimulation and the degranulation, the [[eosinophils]] release the [[granule]] [[proteins]] into the tissues. [[Eosinophils]] synthesize and release [[cytokines]] such as [[Interleukin 5|IL-5]], [[Interleukin 13|IL-13]], Transforming growth factor (TGF)-α and -β, [[Chemokines]] (eotaxins and RANTES), Lipid mediators such as platelet activating factor ([[PAF]]) and [[leukotriene]] C4. [[Interleukin 5|IL-5]], [[IL-13]], and [[granulocyte]]-[[macrophage]] colony stimulating factor ([[GM-CSF]]) can cause the [[maturation]] and migration of the [[eosinophils]]. [[Eosinophils]] cause [[inflammation]] in the [[EoE]] patients by the following mechanisms [[Angiogenic]] [[molecules]] from the [[eosinophils]] recruits the [[inflammatory]] [[cells]] and the increase the [[vascularity]]. [[Fibrogenic]] [[Mediator|mediators]] such as TGF-β1 and [[matrix]] [[metalloproteinase]] 9 (MMP)-9 causes the [[airway]] remodeling. MBP and MMP-9 disrupt the integrity of the [[epithelial cells]] of the [[esophageal]] through their involvement in [[smooth muscles]], [[fibroblasts]], and [[Cell adhesion molecule|cell-adhesion]] [[molecules]]. The above-mentioned processes lead to tissue remodeling eventually causing an overall [[esophageal]] [[Dysfunctional|dysfunction]]. [[TGF-β]] and [[eosinophilic]] [[granule]] [[proteins]] MBP and EPO are the key [[eosinophil]] [[Effector cell|effector]] [[proteins]]. The importance of [[eosinophils]] in mediating tissue [[fibrosis]] is supported by evidence in both [[murine]] and human models. These findings not only highlight the importance of targeting [[fibrosis]] reversal in treatment of [[EoE]], but also underline the importance of [[eosinophils]] in tissue remodeling.
* [[Eosinophilic esophagitis]] is an immunoallergic disorder resulting from the interaction between genetics and environmental triggers such as repeated exposure to food and aeroallergens.
 
* Patients presenting with [[Eosinophilic esophagitis|EoE]] have a history of:
** Elevated [[serum]] [[Immunoglobulin E|IgE]] levels  
** Response to interventions such as diet restriction  
** History of food [[hypersensitivity]]
 
* [[Eosinophils]] originate from CD34+ [[myeloid]] precursor cells in the [[bone marrow]], mature to a granulated state and migrate to [[vascular]] spaces.
* The [[eosinophils]] are absent in an otherwise normal [[esophagus]], the presence of the [[eosinophils]] in the [[esophagus]] suggests [[GERD]] or [[EoE]].
*They tend to be present in all layers of the [[esophagus]] in [[Eosinophilic esophagitis|EoE]], but predominate in the [[lamina propria]] and [[Submucosa|submucosal]] regions.  
* The documented [[cytokine]] expression profile in the [[esophageal]] [[tissue]] of [[EoE]] patients is that of a [[T helper cell|TH2]] [[inflammatory]] response.
* [[IL-5]] and [[Interleukin 13|IL-13]] are produced by the type-2 helper T cells ([[Th2]]) in response to the [[antigenic]] [[proteins]] from the [[food]] or [[inhalation]].  
* [[IL-13]] further stimulates the [[epithelial]] cells of the [[esophagus]] to produce large proteins to induce a gene called eotaxin-3, which in turn recruits [[eosinophils]] from the peripheral blood into the tissue.  
* [[IL-5]] prolongs the survival of the [[eosinophils]].
*The activated [[TH2-cells|TH2]] response leads to the recruitment and activation of  
** '''[[Eosinophils]]'''
** '''[[Mast cells]]'''
* [[Mast cells]] [[degranulate]] and cause tissue damage and repair.  
* [[Cytokines]] produced by TH-1 cells are  
** '''[[Tumour necrosis factor|Tumor necrosis factor]] (TNF)-α'''
** '''Interferon (IFN)-γ'''
* [[TNF-α]] is expressed by the [[epithelial cells]] of the [[esophagus]] whereas the INF-γ is upregulated by the [[Peripheral T cells lymphoma|peripheral T cells.]]
* Delayed or type- IV [[hypersensitivity]] is the mechanism is involved in the [[Eosinophilic esophagitis|EoE]] rather than the non-IgE.
*It is postulated that the [[EoE]]-defining [[endoscopic]] and [[histologic]] manifestations are a culmination of the disease process which, may have debilitating long-term effects including [[strictures]] and food impactions in untreated or poorly managed cases of [[EoE]].
 
* CD34+ [[myeloid]] precursor cells in the [[bone marrow]] produce [[eosinophils]] and then the [[eosinophils]] develop granulation and migrate to [[vascular]] spaces.
* [[Eosinophils]] although present in all the layers of the [[esophagus]] in patients with [[EoE]], they are predominant in the lamina propria and [[submucosa]] of the [[esophagus]].
* The preformed [[granule]] [[proteins]] of the [[eosinophils]] are
**'''ECP'''- Eosinophil Cationic Protein
**'''MBP'''- [[Major basic protein|Major Basic Protein]]
**'''EPO'''- Eosinophil [[Peroxidase]]
**'''EDN'''- [[Eosinophil]] Derived [[Neurotoxin]]
* Upon the stimulation and the degranulation, the [[eosinophils]] release the [[granule]] [[proteins]] into the tissues.
* [[Eosinophils]] synthesize and release [[cytokines]] such as
**'''[[Interleukin 5|IL-5]]'''
**'''[[Interleukin 13|IL-13]]'''
**'''Transforming growth factor (TGF)-α and -β'''
**'''[[Chemokines]] (eotaxins and RANTES)'''
**'''Lipid mediators such as platelet activating factor ([[PAF]]) and [[leukotriene]] C4'''
* [[Interleukin 5|IL-5]], [[IL-13]], and [[granulocyte]]-[[macrophage]] colony stimulating factor ([[GM-CSF]]) can cause the [[maturation]] and migration of the [[eosinophils]].
 
* [[Eosinophils]] cause [[inflammation]] in the [[EoE]] patients by the following mechanisms
** [[Angiogenic]] [[molecules]] from the [[eosinophils]] recruits the [[inflammatory]] [[cells]] and the increase the [[vascularity]].  
** [[Fibrogenic]] [[Mediator|mediators]] such as TGF-β1 and [[matrix]] [[metalloproteinase]] 9 (MMP)-9 causes the [[airway]] remodeling.
** MBP and MMP-9 disrupt the integrity of the [[epithelial cells]] of the [[esophageal]] through their involvement in [[smooth muscles]], [[fibroblasts]], and [[Cell adhesion molecule|cell-adhesion]] [[molecules]].  
** The above-mentioned processes lead to tissue remodeling eventually causing an overall [[esophageal]] [[Dysfunctional|dysfunction]].
**[[TGF-β]] and [[eosinophilic]] [[granule]] [[proteins]] MBP and EPO are the key [[eosinophil]] [[Effector cell|effector]] [[proteins]]. The importance of [[eosinophils]] in mediating tissue [[fibrosis]] is supported by evidence in both [[murine]] and human models.  
**These findings not only highlight the importance of targeting [[fibrosis]] reversal in treatment of [[EoE]], but also underline the importance of [[eosinophils]] in tissue remodeling.


==Pathophysiology==
==Pathophysiology==

Revision as of 02:31, 18 December 2017

Eosinophilic Esophagitis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Eosinophilic Esophagitis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Eosinophilic esophagitis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Eosinophilic esophagitis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Eosinophilic esophagitis pathophysiology

CDC on Eosinophilic esophagitis pathophysiology

Eosinophilic esophagitis pathophysiology in the news

Blogs on Eosinophilic esophagitis pathophysiology

Directions to Hospitals Treating Eosinophilic esophagitis

Risk calculators and risk factors for Eosinophilic esophagitis pathophysiology

Overview

Eosinophilic esophagitis is an immunoallergic disorder resulting from the interaction between genetics and environmental triggers such as repeated exposure to food and aeroallergens. Patients presenting with EoE have a history of elevated serum IgE levels, response to interventions such as diet restriction, history of food hypersensitivity. Eosinophils originate from CD34+ myeloid precursor cells in the bone marrow, mature to a granulated state and migrate to vascular spaces. The eosinophils are absent in an otherwise normal esophagus, the presence of the eosinophils in the esophagus suggests GERD or EoE. They tend to be present in all layers of the esophagus in EoE, but predominate in the lamina propria and submucosal regions. The documented cytokine expression profile in the esophageal tissue of EoE patients is that of a TH2 inflammatory response. IL-5 and IL-13 are produced by the type-2 helper T cells (Th2) in response to the antigenic proteins from the food or inhalation. IL-13 further stimulates the epithelial cells of the esophagus to produce large proteins to induce a gene called eotaxin-3, which in turn recruits eosinophils from the peripheral blood into the tissue. IL-5 prolongs the survival of the eosinophils. The activated TH2 response leads to the recruitment and activation of Mast cells degranulate and cause tissue damage and repair. Cytokines produced by TH-1 cells are tumor necrosis factor (TNF)-α, Interferon (IFN)-γ, TNF-α is expressed by the epithelial cells of the esophagus whereas the INF-γ is upregulated by the peripheral T cells. Delayed or type- IV hypersensitivity is the mechanism is involved in the EoE rather than the non-IgE. It is postulated that the EoE-defining endoscopic and histologic manifestations are a culmination of the disease process which, may have debilitating long-term effects including strictures and food impactions in untreated or poorly managed cases of EoE. CD34+ myeloid precursor cells in the bone marrow produce eosinophils and then the eosinophils develop granulation and migrate to vascular spaces. Eosinophils although present in all the layers of the esophagus in patients with EoE, they are predominant in the lamina propria and submucosa of the esophagus. The preformed granule proteins of the eosinophils are ECP- Eosinophil Cationic Protein, MBP- Major Basic Protein, EPO- Eosinophil Peroxidase, EDN- Eosinophil Derived Neurotoxin. Upon the stimulation and the degranulation, the eosinophils release the granule proteins into the tissues. Eosinophils synthesize and release cytokines such as IL-5, IL-13, Transforming growth factor (TGF)-α and -β, Chemokines (eotaxins and RANTES), Lipid mediators such as platelet activating factor (PAF) and leukotriene C4. IL-5, IL-13, and granulocyte-macrophage colony stimulating factor (GM-CSF) can cause the maturation and migration of the eosinophils. Eosinophils cause inflammation in the EoE patients by the following mechanisms Angiogenic molecules from the eosinophils recruits the inflammatory cells and the increase the vascularity. Fibrogenic mediators such as TGF-β1 and matrix metalloproteinase 9 (MMP)-9 causes the airway remodeling. MBP and MMP-9 disrupt the integrity of the epithelial cells of the esophageal through their involvement in smooth muscles, fibroblasts, and cell-adhesion molecules. The above-mentioned processes lead to tissue remodeling eventually causing an overall esophageal dysfunction. TGF-β and eosinophilic granule proteins MBP and EPO are the key eosinophil effector proteins. The importance of eosinophils in mediating tissue fibrosis is supported by evidence in both murine and human models. These findings not only highlight the importance of targeting fibrosis reversal in treatment of EoE, but also underline the importance of eosinophils in tissue remodeling.

Pathophysiology

  • Patients presenting with EoE have a history of:

References

  1. Malhotra N, Levine J (2014). "Eosinophilic esophagitis: an autoimmune esophageal disorder". Curr Probl Pediatr Adolesc Health Care. 44 (11): 335–40. doi:10.1016/j.cppeds.2014.10.004. PMID 25499460.
  2. Martin LJ, Franciosi JP, Collins MH, Abonia JP, Lee JJ, Hommel KA, Varni JW, Grotjan JT, Eby M, He H, Marsolo K, Putnam PE, Garza JM, Kaul A, Wen T, Rothenberg ME (2015). "Pediatric Eosinophilic Esophagitis Symptom Scores (PEESS v2.0) identify histologic and molecular correlates of the key clinical features of disease". J. Allergy Clin. Immunol. 135 (6): 1519–28.e8. doi:10.1016/j.jaci.2015.03.004. PMC 4460579. PMID 26051952.
  3. Lucendo AJ, Arias A, Tenias JM (2014). "Relation between eosinophilic esophagitis and oral immunotherapy for food allergy: a systematic review with meta-analysis". Ann. Allergy Asthma Immunol. 113 (6): 624–9. doi:10.1016/j.anai.2014.08.004. PMID 25216976.
  4. López-Colombo A (2012). "[Eosinophilic esophagitis]". Rev Gastroenterol Mex (in Spanish; Castilian). 77 Suppl 1: 1–3. doi:10.1016/j.rgmx.2012.07.002. PMID 22939463.
  5. Chehade M, Lucendo AJ, Achem SR, Souza RF (2013). "Causes, evaluation, and consequences of eosinophilic esophagitis". Ann. N. Y. Acad. Sci. 1300: 110–8. doi:10.1111/nyas.12243. PMID 24117638.
  6. Straumann A (2013). "Eosinophilic esophagitis: a bulk of mysteries". Dig Dis. 31 (1): 6–9. doi:10.1159/000347095. PMID 23797116.
  7. Straumann A (2012). "Eosinophilic esophagitis: rapidly emerging disorder". Swiss Med Wkly. 142: w13513. doi:10.4414/smw.2012.13513. PMID 22307811.
  8. Schoepfer AM, Simon D, Straumann A (2011). "Eosinophilic oesophagitis: latest intelligence". Clin. Exp. Allergy. 41 (5): 630–9. doi:10.1111/j.1365-2222.2011.03739.x. PMID 21429051.
  9. Godat S, Moradpour D, Schoepfer A (2011). "[Eosinophilic esophagitis: update 2011]". Rev Med Suisse (in French). 7 (307): 1678–80, 1682. PMID 21987875.
  10. Potter JW, Saeian K, Staff D, Massey BT, Komorowski RA, Shaker R, Hogan WJ (2004). "Eosinophilic esophagitis in adults: an emerging problem with unique esophageal features". Gastrointest. Endosc. 59 (3): 355–61. PMID 14997131.


Template:Gastroenterology

Template:WH Template:WikiDoc Sources