Indinavir microbiology

Jump to navigation Jump to search
Indinavir
CRIXIVAN® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamed Moubarak, M.D. [2]

Microbiology

Mechanism of Action:

HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles.

Antiretroviral Activity In Vitro:

The in vitro activity of indinavir was assessed in cell lines of lymphoblastic and monocytic origin and in peripheral blood lymphocytes. HIV-1 variants used to infect the different cell types include laboratory-adapted variants, primary clinical isolates and clinical isolates resistant to nucleoside analogue and nonnucleoside inhibitors of the HIV-1 reverse transcriptase. The IC95 (95% inhibitory concentration) of indinavir in these test systems was in the range of 25 to 100 nM. In drug combination studies with the nucleoside analogues zidovudine and didanosine, indinavir showed synergistic activity in cell culture. The relationship between in vitro susceptibility of HIV-1 to indinavir and inhibition of HIV-1 replication in humans has not been established.

Drug Resistance:

Isolates of HIV-1 with reduced susceptibility to the drug have been recovered from some patients treated with indinavir. Viral resistance was correlated with the accumulation of mutations that resulted in the expression of amino acid substitutions in the viral protease. Eleven amino acid residue positions, (L10l/V/R, K20l/M/R, L24l, M46l/L, l54A/V, L63P, l64V, A71T/V, V82A/F/T, l84V, and L90M), at which substitutions are associated with resistance, have been identified. Resistance was mediated by the co-expression of multiple and variable substitutions at these positions. No single substitution was either necessary or sufficient for measurable resistance (≥4-fold increase in IC95). In general, higher levels of resistance were associated with the co-expression of greater numbers of substitutions, although their individual effects varied and were not additive. At least 3 amino acid substitutions must be present for phenotypic resistance to indinavir to reach measurable levels. In addition, mutations in the p7/ p1 and p1/ p6 gag cleavage sites were observed in some indinavir resistant HIV-1 isolates.

In vitro phenotypic susceptibilities to indinavir were determined for 38 viral isolates from 13 patients who experienced virologic rebounds during indinavir monotherapy. Pre-treatment isolates from five patients exhibited indinavir IC95 values of 50-100 nM. At or following viral RNA rebound (after 12-76 weeks of therapy), IC95 values ranged from 25 to >3000 nM, and the viruses carried 2 to 10 mutations in the protease gene relative to baseline.

Cross-Resistance to Other Antiviral Agents:

Varying degrees of HIV-1 cross-resistance have been observed between indinavir and other HIV-1 protease inhibitors. In studies with ritonavir, saquinavir, and amprenavir, the extent and spectrum of cross-resistance varied with the specific mutational patterns observed. In general, the degree of cross-resistance increased with the accumulation of resistance-associated amino acid substitutions. Within a panel of 29 viral isolates from indinavir-treated patients that exhibited measurable (≥4-fold) phenotypic resistance to indinavir, all were resistant to ritonavir. Of the indinavir resistant HIV-1 isolates, 63% showed resistance to saquinavir and 81% to amprenavir.[1]

References

  1. "CRIXIVAN (INDINAVIR SULFATE) CAPSULE [MERCK SHARP & DOHME CORP.]". Text " accessdate" ignored (help)

Adapted from the FDA Package Insert.