Subependymal giant cell astrocytoma pathophysiology

Jump to navigation Jump to search

Subependymal giant cell astrocytoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Subependymal Giant Cell Astrocytoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Subependymal giant cell astrocytoma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Subependymal giant cell astrocytoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Subependymal giant cell astrocytoma pathophysiology

CDC on Subependymal giant cell astrocytoma pathophysiology

Subependymal giant cell astrocytoma pathophysiology in the news

Blogs on Subependymal giant cell astrocytoma pathophysiology

Directions to Hospitals Treating Ependymoma

Risk calculators and risk factors for Subependymal giant cell astrocytoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Sujit Routray, M.D. [2]

Overview

Subependymal giant cell astrocytoma is almost exclusively associated with tuberous sclerosis complex, which is an autosomal dominant disorder. It is associated with inactivation of the tumor suppressor genes, TSC1 and/or TSC2. It is also believed to arise from a subependymal nodule present in the ventricular wall of a patient with tuberous sclerosis. On gross pathology, subependymal giant cell astrocytoma is characterized by a large, fleshy, well-circumscribed intraventricular mass in the wall of the lateral ventricle near the foramen of Monro, that does not invade into the periventricular parenchyma. Some of the common findings seen on microscopic pathology include pleomorphic multinuleated eosinophilic cells, streams of elongated tumor cells with abundant cytoplasm, and clustered cells arranged in a perivascular pseudopallisading pattern. On immunohistochemistry, the tumor cells are positive for glial fibrillary acidic protein, microtubule-associated protein 2, synaptophysin, S-100, neurofilament, and neuron-specific enolase.

Pathophysiology

Pathogenesis

  • Subependymal giant cell astrocytoma is a rare, benign tumor predominantly associated with tuberous sclerosis complex, although a few cases have been reported in patients without evidence of tuberous sclerosis.[1]
  • It is classified as a WHO grade I central nervous system tumor.
  • It is of glioneuronal origin and typically arises from the caudothalamic groove adjacent to the foramen of monro.[2][3]
  • The inactivation of the tumor suppressor genes TSC1 (on chromosome 9q34) and/or TSC2 (on chromosome 16p13) results in the formation of subependymal giant cell astrocytoma in people with tuberous sclerosis.[1]
  • TSC1 and TSC2 encodes the proteins tuberin and hamartin, respectively. The tuberin/harmatin complex suppresses Ras homolog enriched in brain (RHES) which functions as a direct activator of the mammalian target of rapamycin (mTOR). The complex also inhibits cyclin-dependent kinase inhibitor 1B, which regulates cell cycle progression. The activation of mTOR and progression of the cell cycle from the loss of upstream inhibition leads to protein translation, cell growth, and proliferation.[1]
  • It is believed that a subependymal nodule, which are common brain masses seen in tuberous sclerosis, can transform to subependymal giant cell astrocytoma.
  • It is commonly located in the ventricles but a few may have extraventricular locations.[2]
  • Subependymal giant cell astrocytoma is a major cause of tuberous sclerosis complex-related morbidity and mortality during the pediatrics age, as it is seen in 10 to 20% of these patients.[4]
  • It is believed to arise from a subependymal nodule but this is controversial because subependymal giant cell astrocytomas are located in the caudothalamic groove while subependymal nodules are located in the ependymal lining of the lateral ventricles along the caudate nucleus.[4]
  • On Immunohistochemistry, the tumor cells test positive for the glial fibrillary acidic protein and microtubule-associated protein 2.[4]

Genetics

Genes involved in the pathogenesis of subependymal giant cell astrocytoma include:[5]

  • TSC1
  • TSC2

Associated Conditions

Conditions associated with subependymal giant cell astrocytoma include:[5]

  • Tuberous sclerosis

Microscopic Pathology

On microscopic histopathological analysis, subependymal giant cell astrocytoma is characterized by:[4][6][7][8][1][9][9]

  • Pleomorphic multinuleated eosinophilic cells
  • Streams of elongated tumor cells with abundant cytoplasm
  • Clustered cells arranged in a perivascular pseudopallisading pattern
  • Evenly distributed granular chromatin
  • Frequent binucleation and multinucleation
  • Vesicular nuclei
  • Occasional distinct to prominent nucleoli
  • On rare occasions, there can be atypical features such as vascular endothelial proliferations, mitosis, and necrosis
  • Tumor cells are positive on immunohistochemistry for glial fibrillary acidic protein, microtubule-associated protein 2, synaptophysin, S-100, neurofilament, and neuron-specific enolase.

References

  1. 1.0 1.1 1.2 1.3 Beaumont, Thomas L.; Godzik, Jakub; Dahiya, Sonika; Smyth, Matthew D. (2015). "Subependymal giant cell astrocytoma in the absence of tuberous sclerosis complex: case report". Journal of Neurosurgery: Pediatrics. 16 (2): 134–137. doi:10.3171/2015.1.PEDS13146. ISSN 1933-0707.
  2. 2.0 2.1 Roth, Jonathan; Roach, E. Steve; Bartels, Ute; Jóźwiak, Sergiusz; Koenig, Mary Kay; Weiner, Howard L.; Franz, David N.; Wang, Henry Z. (2013). "Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012". Pediatric Neurology. 49 (6): 439–444. doi:10.1016/j.pediatrneurol.2013.08.017. ISSN 0887-8994.
  3. Louis, David N.; Ohgaki, Hiroko; Wiestler, Otmar D.; Cavenee, Webster K.; Burger, Peter C.; Jouvet, Anne; Scheithauer, Bernd W.; Kleihues, Paul (2007). "The 2007 WHO Classification of Tumours of the Central Nervous System". Acta Neuropathologica. 114 (2): 97–109. doi:10.1007/s00401-007-0243-4. ISSN 0001-6322.
  4. 4.0 4.1 4.2 4.3 Jung TY, Kim YH, Jung S, Baek HJ, Lee KH (2015). "The clinical characteristics of subependymal giant cell astrocytoma: five cases". Brain Tumor Res Treat. 3 (1): 44–7. doi:10.14791/btrt.2015.3.1.44. PMC 4426277. PMID 25977907.
  5. 5.0 5.1 Campen CJ, Porter BE (2011). "Subependymal Giant Cell Astrocytoma (SEGA) Treatment Update". Curr Treat Options Neurol. 13 (4): 380–5. doi:10.1007/s11940-011-0123-z. PMC 3130084. PMID 21465222.
  6. Ouyang, Taohui; Zhang, Na; Benjamin, Thomas; Wang, Long; Jiao, Jiantong; Zhao, Yiqing; Chen, Jian (2014). "Subependymal giant cell astrocytoma: current concepts, management, and future directions". Child's Nervous System. 30 (4): 561–570. doi:10.1007/s00381-014-2383-x. ISSN 0256-7040.
  7. Microscopic features of subependymal giant cell astrocytoma. Libre pathology 2015. http://librepathology.org/wiki/index.php/Subependymal_giant_cell_astrocytoma. Accessed on November 2, 2015
  8. Shepherd CW, Scheithauer BW, Gomez MR, Altermatt HJ, Katzmann JA (1991). "Subependymal giant cell astrocytoma: a clinical, pathological, and flow cytometric study". Neurosurgery. 28 (6): 864–8. PMID 2067610.
  9. 9.0 9.1 Nasit J, Vaghsiya V, Hiryur S, Patel S (2016). "Intraoperative Squash Cytologic Features of Subependymal Giant Cell Astrocytoma". J Lab Physicians. 8 (1): 58–61. doi:10.4103/0974-2727.176231. PMC 4785769. PMID 27013816.


Template:WikiDoc Sources