SCO1: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Protein SCO1 homolog, mitochondrial''' is a [[protein]] that in humans is encoded by the ''SCO1'' [[gene]].<ref name="pmid9878253">{{cite journal | vauthors = Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M | title = Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain | journal = Genomics | volume = 54 | issue = 3 | pages = 494–504 | date = Dec 1998 | pmid = 9878253 | pmc =  | doi = 10.1006/geno.1998.5580 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6341| accessdate = }}</ref>
| update_page = yes
Mutations in both SCO1 and [[SCO2]] are associated with distinct clinical phenotypes as well as tissue-specific [[cytochrome c oxidase]] deficiency. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable. Expression of SCO2 is also much higher than that of SCO1 in [[muscle]] tissue, while SCO1 is expressed at higher levels in [[liver]] tissue than SCO2.<ref name="pmid20864674">{{cite journal | vauthors = Brosel S, Yang H, Tanji K, Bonilla E, Schon EA | title = Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease | journal = The American Journal of Pathology | volume = 177 | issue = 5 | pages = 2541–8 | date = Nov 2010 | pmid = 20864674 | pmc = 2966810 | doi = 10.2353/ajpath.2010.100229 }}</ref>
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image = PBB_Protein_SCO1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1wp0.
| PDB = {{PDB2|1wp0}}, {{PDB2|2ggt}}, {{PDB2|2gqk}}, {{PDB2|2gql}}, {{PDB2|2gqm}}, {{PDB2|2gt5}}, {{PDB2|2gt6}}, {{PDB2|2gvp}}, {{PDB2|2hrf}}, {{PDB2|2hrn}}
| Name = SCO cytochrome oxidase deficient homolog 1 (yeast)
| HGNCid = 10603
| Symbol = SCO1
| AltSymbols =; SCOD1
| OMIM = 603644
| ECnumber = 
| Homologene = 3374
| MGIid = 106362
| GeneAtlas_image1 = PBB_GE_SCO1_gnf1h00058_at_tn.png
| Function = {{GNF_GO|id=GO:0005507 |text = copper ion binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}}
| Process = {{GNF_GO|id=GO:0006118 |text = electron transport}} {{GNF_GO|id=GO:0006457 |text = protein folding}} {{GNF_GO|id=GO:0008535 |text = cytochrome c oxidase complex assembly}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 6341
    | Hs_Ensembl = ENSG00000133028
    | Hs_RefseqProtein = NP_004580
    | Hs_RefseqmRNA = NM_004589
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 17
    | Hs_GenLoc_start = 10524380
    | Hs_GenLoc_end = 10541570
    | Hs_Uniprot = O75880
    | Mm_EntrezGene = 52892
    | Mm_Ensembl = ENSMUSG00000069844
    | Mm_RefseqmRNA = XM_901619
    | Mm_RefseqProtein = XP_906712
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 11
    | Mm_GenLoc_start = 66868865
    | Mm_GenLoc_end = 66881526
    | Mm_Uniprot = 
  }}
}}
'''SCO cytochrome oxidase deficient homolog 1 (yeast)''', also known as '''SCO1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6341| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Mammalian [[cytochrome c oxidase]] (COX) catalyzes the transfer of reducing equivalents from [[cytochrome c]] to molecular oxygen and pumps protons across the [[inner mitochondrial membrane]]. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog to the yeast SCO1 gene.<ref name="entrez" />
{{PBB_Summary
| section_title =
| summary_text = Mammalian cytochrome c oxidase (COX) catalyzes the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog to the yeast SCO1 gene.<ref name="entrez">{{cite web | title = Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6341| accessdate = }}</ref>
}}


==References==
== Clinical relevance ==
{{reflist|2}}
 
==Further reading==
Mutation in the SCO1 gene are a cause of mitochondrial complex IV deficiency also known as cytochrome c oxidase deficiency. This disorder affects the mitochondrial respiratory chain resulting in a variety of symptoms, ranging from isolated [[myopathy]] to severe multisystem disease affecting several tissues and organs. A subset of patients also suffer from [[Leigh's disease|Leigh syndrome]].<ref name="pmid17189203">{{cite journal | vauthors = Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA | title = The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis | journal = Cell Metabolism | volume = 5 | issue = 1 | pages = 9–20 | date = Jan 2007 | pmid = 17189203 | doi = 10.1016/j.cmet.2006.12.001 }}</ref><ref name="pmid11013136">{{cite journal | vauthors = Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A | title = Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy | journal = American Journal of Human Genetics | volume = 67 | issue = 5 | pages = 1104–9 | date = Nov 2000 | pmid = 11013136 | pmc = 1288552 | doi = 10.1016/S0002-9297(07)62940-1 }}</ref>
 
==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Sco1'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
 
|-
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Peripheral blood lymphocyte]]s || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAQE/salmonella-challenge/ |title=''Salmonella'' infection data for Sco1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | last1 = Gerdin | first1 = AK | journal = Acta Ophthalmologica | volume = 88 | pages =  925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of SCO1 function. A conditional [[knockout mouse]] line, called ''Sco1<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Sco1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363778 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program—a high-throughput mutagenesis project to generate and distribute animal models of disease.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref>
 
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}</ref> Twenty two tests were carried out on [[mutant]] mice and two significant abnormalities were observed.<ref name="mgp_reference" />  No [[homozygous]] [[mutant]] embryos were identified during gestation, and therefore none survived until [[weaning]]. The remaining tests were carried out on [[heterozygous]] mutant adult mice; no additional significant abnormalities were observed in these animals.<ref name="mgp_reference" />
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Shoubridge EA | title = Cytochrome c oxidase deficiency | journal = American Journal of Medical Genetics | volume = 106 | issue = 1 | pages = 46–52 | year = 2001 | pmid = 11579424 | doi = 10.1002/ajmg.1378 }}
| citations =
* {{cite journal | vauthors = Schulze M, Rödel G | title = Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene | journal = Molecular & General Genetics | volume = 216 | issue = 1 | pages = 37–43 | date = Mar 1989 | pmid = 2543907 | doi = 10.1007/BF00332228 }}
*{{cite journal | author=Shoubridge EA |title=Cytochrome c oxidase deficiency. |journal=Am. J. Med. Genet. |volume=106 |issue= 1 |pages= 46-52 |year= 2001 |pmid= 11579424 |doi= 10.1002/ajmg.1378 }}
* {{cite journal | vauthors = Schulze M, Rödel G | title = SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II | journal = Molecular & General Genetics | volume = 211 | issue = 3 | pages = 492–8 | date = Mar 1988 | pmid = 2835635 | doi = 10.1007/BF00425706 }}
*{{cite journal | author=Schulze M, Rödel G |title=Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene. |journal=Mol. Gen. Genet. |volume=216 |issue= 1 |pages= 37-43 |year= 1989 |pmid= 2543907 |doi= }}
* {{cite journal | vauthors = Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA | title = A "double adaptor" method for improved shotgun library construction | journal = Analytical Biochemistry | volume = 236 | issue = 1 | pages = 107–13 | date = Apr 1996 | pmid = 8619474 | doi = 10.1006/abio.1996.0138 }}
*{{cite journal | author=Schulze M, Rödel G |title=SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. |journal=Mol. Gen. Genet. |volume=211 |issue= 3 |pages= 492-8 |year= 1988 |pmid= 2835635 |doi= }}
* {{cite journal | vauthors = Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA | title = Large-scale concatenation cDNA sequencing | journal = Genome Research | volume = 7 | issue = 4 | pages = 353–8 | date = Apr 1997 | pmid = 9110174 | pmc = 139146 | doi = 10.1101/gr.7.4.353 }}
*{{cite journal | author=Andersson B, Wentland MA, Ricafrente JY, ''et al.'' |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107-13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
* {{cite journal | vauthors = Paret C, Ostermann K, Krause-Buchholz U, Rentzsch A, Rödel G | title = Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization | journal = FEBS Letters | volume = 447 | issue = 1 | pages = 65–70 | date = Mar 1999 | pmid = 10218584 | doi = 10.1016/S0014-5793(99)00266-5 }}
*{{cite journal | author=Yu W, Andersson B, Worley KC, ''et al.'' |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353-8 |year= 1997 |pmid= 9110174 |doi= }}
* {{cite journal | vauthors = Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA | title = Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene | journal = Nature Genetics | volume = 23 | issue = 3 | pages = 333–7 | date = Nov 1999 | pmid = 10545952 | doi = 10.1038/15513 }}
*{{cite journal  | author=Petruzzella V, Tiranti V, Fernandez P, ''et al.'' |title=Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. |journal=Genomics |volume=54 |issue= 3 |pages= 494-504 |year= 1999 |pmid= 9878253 |doi= 10.1006/geno.1998.5580 }}
* {{cite journal | vauthors = Horvath R, Lochmüller H, Stucka R, Yao J, Shoubridge EA, Kim SH, Gerbitz KD, Jaksch M | title = Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency | journal = Biochemical and Biophysical Research Communications | volume = 276 | issue = 2 | pages = 530–3 | date = Sep 2000 | pmid = 11027508 | doi = 10.1006/bbrc.2000.3495 }}
*{{cite journal | author=Paret C, Ostermann K, Krause-Buchholz U, ''et al.'' |title=Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization. |journal=FEBS Lett. |volume=447 |issue= 1 |pages= 65-70 |year= 1999 |pmid= 10218584 |doi= }}
* {{cite journal | vauthors = Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA | title = Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase | journal = Human Molecular Genetics | volume = 13 | issue = 17 | pages = 1839–48 | date = Sep 2004 | pmid = 15229189 | doi = 10.1093/hmg/ddh197 }}
*{{cite journal | author=Papadopoulou LC, Sue CM, Davidson MM, ''et al.'' |title=Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. |journal=Nat. Genet. |volume=23 |issue= 3 |pages= 333-7 |year= 1999 |pmid= 10545952 |doi= 10.1038/15513 }}
* {{cite journal | vauthors = Williams JC, Sue C, Banting GS, Yang H, Glerum DM, Hendrickson WA, Schon EA | title = Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein | journal = The Journal of Biological Chemistry | volume = 280 | issue = 15 | pages = 15202–11 | date = Apr 2005 | pmid = 15659396 | doi = 10.1074/jbc.M410705200 }}
*{{cite journal | author=Valnot I, Osmond S, Gigarel N, ''et al.'' |title=Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. |journal=Am. J. Hum. Genet. |volume=67 |issue= 5 |pages= 1104-9 |year= 2000 |pmid= 11013136 |doi=  }}
* {{cite journal | vauthors = Horng YC, Leary SC, Cobine PA, Young FB, George GN, Shoubridge EA, Winge DR | title = Human Sco1 and Sco2 function as copper-binding proteins | journal = The Journal of Biological Chemistry | volume = 280 | issue = 40 | pages = 34113–22 | date = Oct 2005 | pmid = 16091356 | doi = 10.1074/jbc.M506801200 }}
*{{cite journal  | author=Horvath R, Lochmüller H, Stucka R, ''et al.'' |title=Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency. |journal=Biochem. Biophys. Res. Commun. |volume=276 |issue= 2 |pages= 530-3 |year= 2000 |pmid= 11027508 |doi= 10.1006/bbrc.2000.3495 }}
* {{cite journal | vauthors = Cobine PA, Pierrel F, Leary SC, Sasarman F, Horng YC, Shoubridge EA, Winge DR | title = The P174L mutation in human Sco1 severely compromises Cox17-dependent metalation but does not impair copper binding | journal = The Journal of Biological Chemistry | volume = 281 | issue = 18 | pages = 12270–6 | date = May 2006 | pmid = 16520371 | doi = 10.1074/jbc.M600496200 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Mangani S, Martinelli M, Palumaa P, Wang S | title = A hint for the function of human Sco1 from different structures | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 23 | pages = 8595–600 | date = Jun 2006 | pmid = 16735468 | pmc = 1482625 | doi = 10.1073/pnas.0601375103 }}
*{{cite journal  | author=Leary SC, Kaufman BA, Pellecchia G, ''et al.'' |title=Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. |journal=Hum. Mol. Genet. |volume=13 |issue= 17 |pages= 1839-48 |year= 2005 |pmid= 15229189 |doi= 10.1093/hmg/ddh197 }}
* {{cite journal | vauthors = Leary SC, Sasarman F, Nishimura T, Shoubridge EA | title = Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1 | journal = Human Molecular Genetics | volume = 18 | issue = 12 | pages = 2230–40 | date = Jun 2009 | pmid = 19336478 | doi = 10.1093/hmg/ddp158 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
* {{cite journal | vauthors = Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J | title = Loss of function of Sco1 and its interaction with cytochrome c oxidase | journal = American Journal of Physiology. Cell Physiology | volume = 296 | issue = 5 | pages = C1218-26 | date = May 2009 | pmid = 19295170 | doi = 10.1152/ajpcell.00564.2008 }}
*{{cite journal  | author=Williams JC, Sue C, Banting GS, ''et al.'' |title=Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein. |journal=J. Biol. Chem. |volume=280 |issue= 15 |pages= 15202-11 |year= 2005 |pmid= 15659396 |doi= 10.1074/jbc.M410705200 }}
*{{cite journal | author=Horng YC, Leary SC, Cobine PA, ''et al.'' |title=Human Sco1 and Sco2 function as copper-binding proteins. |journal=J. Biol. Chem. |volume=280 |issue= 40 |pages= 34113-22 |year= 2005 |pmid= 16091356 |doi= 10.1074/jbc.M506801200 }}
*{{cite journal | author=Cobine PA, Pierrel F, Leary SC, ''et al.'' |title=The P174L mutation in human Sco1 severely compromises Cox17-dependent metallation but does not impair copper binding. |journal=J. Biol. Chem. |volume=281 |issue= 18 |pages= 12270-6 |year= 2006 |pmid= 16520371 |doi= 10.1074/jbc.M600496200 }}
*{{cite journal | author=Banci L, Bertini I, Calderone V, ''et al.'' |title=A hint for the function of human Sco1 from different structures. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 23 |pages= 8595-600 |year= 2006 |pmid= 16735468 |doi= 10.1073/pnas.0601375103 }}
*{{cite journal | author=Leary SC, Cobine PA, Kaufman BA, ''et al.'' |title=The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. |journal=Cell Metab. |volume=5 |issue= 1 |pages= 9-20 |year= 2007 |pmid= 17189203 |doi= 10.1016/j.cmet.2006.12.001 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{PDB Gallery|geneid=6341}}
{{WikiDoc Sources}}
 
[[Category:Genes mutated in mice]]

Revision as of 06:00, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Protein SCO1 homolog, mitochondrial is a protein that in humans is encoded by the SCO1 gene.[1][2] Mutations in both SCO1 and SCO2 are associated with distinct clinical phenotypes as well as tissue-specific cytochrome c oxidase deficiency. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable. Expression of SCO2 is also much higher than that of SCO1 in muscle tissue, while SCO1 is expressed at higher levels in liver tissue than SCO2.[3]

Function

Mammalian cytochrome c oxidase (COX) catalyzes the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog to the yeast SCO1 gene.[2]

Clinical relevance

Mutation in the SCO1 gene are a cause of mitochondrial complex IV deficiency also known as cytochrome c oxidase deficiency. This disorder affects the mitochondrial respiratory chain resulting in a variety of symptoms, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. A subset of patients also suffer from Leigh syndrome.[4][5]

Model organisms

Model organisms have been used in the study of SCO1 function. A conditional knockout mouse line, called Sco1tm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program—a high-throughput mutagenesis project to generate and distribute animal models of disease.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty two tests were carried out on mutant mice and two significant abnormalities were observed.[7] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no additional significant abnormalities were observed in these animals.[7]

References

  1. Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M (Dec 1998). "Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain". Genomics. 54 (3): 494–504. doi:10.1006/geno.1998.5580. PMID 9878253.
  2. 2.0 2.1 "Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)".
  3. Brosel S, Yang H, Tanji K, Bonilla E, Schon EA (Nov 2010). "Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease". The American Journal of Pathology. 177 (5): 2541–8. doi:10.2353/ajpath.2010.100229. PMC 2966810. PMID 20864674.
  4. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA (Jan 2007). "The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis". Cell Metabolism. 5 (1): 9–20. doi:10.1016/j.cmet.2006.12.001. PMID 17189203.
  5. Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A (Nov 2000). "Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy". American Journal of Human Genetics. 67 (5): 1104–9. doi:10.1016/S0002-9297(07)62940-1. PMC 1288552. PMID 11013136.
  6. "Salmonella infection data for Sco1". Wellcome Trust Sanger Institute.
  7. 7.0 7.1 7.2 7.3 Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  8. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. "International Knockout Mouse Consortium".
  10. "Mouse Genome Informatics".
  11. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  12. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  13. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  14. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

  • Shoubridge EA (2001). "Cytochrome c oxidase deficiency". American Journal of Medical Genetics. 106 (1): 46–52. doi:10.1002/ajmg.1378. PMID 11579424.
  • Schulze M, Rödel G (Mar 1989). "Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene". Molecular & General Genetics. 216 (1): 37–43. doi:10.1007/BF00332228. PMID 2543907.
  • Schulze M, Rödel G (Mar 1988). "SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II". Molecular & General Genetics. 211 (3): 492–8. doi:10.1007/BF00425706. PMID 2835635.
  • Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
  • Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
  • Paret C, Ostermann K, Krause-Buchholz U, Rentzsch A, Rödel G (Mar 1999). "Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization". FEBS Letters. 447 (1): 65–70. doi:10.1016/S0014-5793(99)00266-5. PMID 10218584.
  • Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (Nov 1999). "Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene". Nature Genetics. 23 (3): 333–7. doi:10.1038/15513. PMID 10545952.
  • Horvath R, Lochmüller H, Stucka R, Yao J, Shoubridge EA, Kim SH, Gerbitz KD, Jaksch M (Sep 2000). "Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency". Biochemical and Biophysical Research Communications. 276 (2): 530–3. doi:10.1006/bbrc.2000.3495. PMID 11027508.
  • Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (Sep 2004). "Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase". Human Molecular Genetics. 13 (17): 1839–48. doi:10.1093/hmg/ddh197. PMID 15229189.
  • Williams JC, Sue C, Banting GS, Yang H, Glerum DM, Hendrickson WA, Schon EA (Apr 2005). "Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein". The Journal of Biological Chemistry. 280 (15): 15202–11. doi:10.1074/jbc.M410705200. PMID 15659396.
  • Horng YC, Leary SC, Cobine PA, Young FB, George GN, Shoubridge EA, Winge DR (Oct 2005). "Human Sco1 and Sco2 function as copper-binding proteins". The Journal of Biological Chemistry. 280 (40): 34113–22. doi:10.1074/jbc.M506801200. PMID 16091356.
  • Cobine PA, Pierrel F, Leary SC, Sasarman F, Horng YC, Shoubridge EA, Winge DR (May 2006). "The P174L mutation in human Sco1 severely compromises Cox17-dependent metalation but does not impair copper binding". The Journal of Biological Chemistry. 281 (18): 12270–6. doi:10.1074/jbc.M600496200. PMID 16520371.
  • Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Mangani S, Martinelli M, Palumaa P, Wang S (Jun 2006). "A hint for the function of human Sco1 from different structures". Proceedings of the National Academy of Sciences of the United States of America. 103 (23): 8595–600. doi:10.1073/pnas.0601375103. PMC 1482625. PMID 16735468.
  • Leary SC, Sasarman F, Nishimura T, Shoubridge EA (Jun 2009). "Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1". Human Molecular Genetics. 18 (12): 2230–40. doi:10.1093/hmg/ddp158. PMID 19336478.
  • Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J (May 2009). "Loss of function of Sco1 and its interaction with cytochrome c oxidase". American Journal of Physiology. Cell Physiology. 296 (5): C1218–26. doi:10.1152/ajpcell.00564.2008. PMID 19295170.