Hemorrhagic stroke surgery

Jump to navigation Jump to search

Hemorrhagic stroke Microchapters

Main Stroke Page

Ischemic Stroke Page

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Stroke from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Emergency Diagnosis and Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

CT

MRI

Other Imaging Findings

Treatment

Early Assessment

NIH Stroke Scale

Management

Surgery

Rehabilitation

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhage (2015)

Management of ICH

AHA/ASA Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage (2012)

Management of aSAH

AHA/ASA Guideline Recommendation for the Primary Prevention of Stroke (2014)

Primary Prevention of Stroke

AHA/ASA Guideline Recommendations for Prevention of Stroke in Women (2014)

Overview

Sex-Specific Risk Factors

Pregnancy and Complications
Cerebral Venous Thrombosis
Oral Contraceptives
Menopause and Postmenopausal Hormonal Therapy

Risk Factors Commoner in Women

Migraine with Aura
Obesity, Metabolic Syndrome, and Lifestyle Factors
Atrial Fibrillation

Prevention

Case Studies

Case #1

Hemorrhagic stroke surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hemorrhagic stroke surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hemorrhagic stroke surgery

CDC on Hemorrhagic stroke surgery

Hemorrhagic stroke surgery in the news

Blogs on Hemorrhagic stroke surgery

Directions to Hospitals Treating Stroke

Risk calculators and risk factors for Hemorrhagic stroke surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

The role of surgery for most patients with spontaneous ICH remains controversial. The theoretical rationale for hematoma evacuation revolves around the concepts of preventing herniation, reducing ICP, and decreasing the pathophysiological impact of the hematoma on surrounding tissue by decreasing mass effect or the cellular toxicity of blood products. Additionally, the current recommendations do not apply to intracranial hemorrhage caused by trauma or underlying structural lesions such as aneurysms and arteriovenous malformations, because these patients were not included in the described ICH surgery trials.

Surgery

Craniotomy for supratentorial hemorrhage

Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, and it is still unclarified whether surgery may benefit specific groups of patients with supratentorial ICH.

Craniotomy for posterior fossa hemorrhage

Because of the narrow confines of the posterior fossa, obstructive hydrocephalus and local mass effect on the brainstem can result in rapid deterioration of the patient with cerebellar hemorrhage.

  • Surgical decompression in patients whom cerebellar hemorrhage is associated with brainstem compression or hydrocephalus or patients with cerebellar hemorrhages >3 cm in diameteris are associated with good outcomes.
  • Controlling ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recommended, and may actually be harmfu.239
  • Evacuation of brainstem hemorrhages may be harmful in many cases

Minimally invasive surgical evacuation of ICH

Several recent randomized studies have shown minimally invasive aspiration associated with better outcomes with less invasive approaches compared to standard craniotomies.

References


Template:WS Template:WH