Autoimmune hemolytic anemia historical perspective: Difference between revisions

Jump to navigation Jump to search
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Autoimmune hemolytic anemia}}
{{Autoimmune hemolytic anemia}}
{{CMG}} '''Assosciate Editor(s)-In-Chief:''' [[User: Prashanthsaddala|Prashanth Saddala M.B.B.S]]; {{shyam}}
{{CMG}} '''Assosciate Editor(s)-In-Chief:''' [[User: Prashanthsaddala|Prashanth Saddala M.B.B.S]]; {{shyam}}, [[User:Irfan Dotani|Irfan Dotani]] [3]


==Overview==
==Overview==
The history of studies on autoimmune hemolytic anemia begins in the early 20th century with the description of clinical syndromes involving low [[hemoglobin]] in the setting of a circulating antibody. Various groups reported on the production of [[antibodies]] that could bind to red blood cells at either warm or cold temperatures. Over the years, diagnostic tests were developed and optimized to determine the exact type of antibody involved in [[hemolysis]]. Treatment modalities were developed, beginning with [[corticosteroids]]. Other [[immunosuppressive]] medications, such as [[rituximab]], were soon found to be effective in patients with hemolytic anemia.


==Historical Perspective==
==Historical Perspective==
*In '''1904''', Donath and Landsteiner described the syndrome of [[paroxsymal cold hemoglobinuria]] (PCH), which is due to an IgG autoantibody that can trigger intravascular hemolysis.<ref name="pmid25699184">{{cite journal| author=Akpoguma AO, Carlisle TL, Lentz SR| title=Case report: paroxysmal cold hemoglobinuria presenting during pregnancy. | journal=BMC Hematol | year= 2015 | volume= 15 | issue=  | pages= 3 | pmid=25699184 | doi=10.1186/s12878-015-0023-7 | pmc=4334594 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25699184  }} </ref> Donath and Landsteiner described a biphasic hemolysin (IgG) that binds [[red blood cells]] and low temperatures and triggers [[complement]]-mediated intravascular hemolysis at warm temperatures. This is now known as the [[Donath-Landsteiner antibody]].


*In '''1945''', Coombs described the anti-globin test, which is now known as the Coombs' test or direct anti-globulin test.<ref name="pmid24678166">{{cite journal| author=Chaudhary RK, Das SS| title=Autoimmune hemolytic anemia: From lab to bedside. | journal=Asian J Transfus Sci | year= 2014 | volume= 8 | issue= 1 | pages= 5-12 | pmid=24678166 | doi=10.4103/0973-6247.126681 | pmc=3943148 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24678166  }} </ref> Coombs was able to detect antibodies coating [[red blood cells]], but the limit of detection was poor, with the requirement that a [[red blood cell]] needed to be coated with 100-500 molecules of IgG. This threshold was later improved using the super Coombs' test, which could detect presence of autoimmune hemolytic anemia even when fewer molecules of IgG were present on the [[red blood cell]].
*In '''1945''', Coombs described the anti-globin test, which is now known as the Coombs' test or direct anti-globulin test.<ref name="pmid24678166">{{cite journal| author=Chaudhary RK, Das SS| title=Autoimmune hemolytic anemia: From lab to bedside. | journal=Asian J Transfus Sci | year= 2014 | volume= 8 | issue= 1 | pages= 5-12 | pmid=24678166 | doi=10.4103/0973-6247.126681 | pmc=3943148 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24678166  }} </ref> Coombs was able to detect antibodies coating [[red blood cells]], but the limit of detection was poor, with the requirement that a [[red blood cell]] needed to be coated with 100-500 molecules of IgG. This threshold was later improved using the super Coombs' test, which could detect presence of autoimmune hemolytic anemia even when fewer molecules of IgG were present on the [[red blood cell]].
Line 13: Line 16:
*In '''1968''', Balcerzak confirmed the phenomenon of hemolytic anemia in conjunction with cholestatic jaundice and hypercholesterolemia.<ref name="pmid29381966">{{cite journal| author=Liu MX, Wen XY, Leung YK, Zheng YJ, Jin MS, Jin QL et al.| title=Hemolytic anemia in alcoholic liver disease: Zieve syndrome: A case report and literature review. | journal=Medicine (Baltimore) | year= 2017 | volume= 96 | issue= 47 | pages= e8742 | pmid=29381966 | doi=10.1097/MD.0000000000008742 | pmc=5708965 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29381966  }} </ref> This condition was known as Zieve syndrome, named after Leslie Zieve.
*In '''1968''', Balcerzak confirmed the phenomenon of hemolytic anemia in conjunction with cholestatic jaundice and hypercholesterolemia.<ref name="pmid29381966">{{cite journal| author=Liu MX, Wen XY, Leung YK, Zheng YJ, Jin MS, Jin QL et al.| title=Hemolytic anemia in alcoholic liver disease: Zieve syndrome: A case report and literature review. | journal=Medicine (Baltimore) | year= 2017 | volume= 96 | issue= 47 | pages= e8742 | pmid=29381966 | doi=10.1097/MD.0000000000008742 | pmc=5708965 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29381966  }} </ref> This condition was known as Zieve syndrome, named after Leslie Zieve.


*In '''1970''', Zuelzer and colleagues from Wayne State School of Medicine in Detroit described the nature and proposed etiologies of autoimmune hemolytic anemia <ref name="pmid4194012">{{cite journal| author=Zuelzer WW, Mastrangelo R, Stulberg CS, Poulik MD, Page RH, Thompson RI| title=Autoimmune hemolytic anemia. Natural history and viral-immunologic interactions in childhood. | journal=Am J Med | year= 1970 | volume= 49 | issue= 1 | pages= 80-93 | pmid=4194012 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4194012  }} </ref> They noted that autoantibodies could be produced by transient viral infections, such as CMV infection.<ref name="pmid4194012">{{cite journal| author=Zuelzer WW, Mastrangelo R, Stulberg CS, Poulik MD, Page RH, Thompson RI| title=Autoimmune hemolytic anemia. Natural history and viral-immunologic interactions in childhood. | journal=Am J Med | year= 1970 | volume= 49 | issue= 1 | pages= 80-93 | pmid=4194012 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4194012  }} </ref> It was noted that there was a close correlation between the onset of infection and presence of hemolysis. Zuelzer and colleagues proposed in their manuscript that the etiology for autoimmune hemolytic anemia was an immunologic handicap predisposing to occult viral infections.
*In '''1970''', Zuelzer and colleagues from Wayne State School of Medicine in Detroit described the nature and proposed etiologies of autoimmune hemolytic anemia.<ref name="pmid4194012">{{cite journal| author=Zuelzer WW, Mastrangelo R, Stulberg CS, Poulik MD, Page RH, Thompson RI| title=Autoimmune hemolytic anemia. Natural history and viral-immunologic interactions in childhood. | journal=Am J Med | year= 1970 | volume= 49 | issue= 1 | pages= 80-93 | pmid=4194012 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4194012  }} </ref> They noted that autoantibodies could be produced by transient viral infections, such as CMV infection.<ref name="pmid4194012">{{cite journal| author=Zuelzer WW, Mastrangelo R, Stulberg CS, Poulik MD, Page RH, Thompson RI| title=Autoimmune hemolytic anemia. Natural history and viral-immunologic interactions in childhood. | journal=Am J Med | year= 1970 | volume= 49 | issue= 1 | pages= 80-93 | pmid=4194012 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4194012  }} </ref> It was noted that there was a close correlation between the onset of infection and presence of hemolysis. Zuelzer and colleagues proposed in their manuscript that the etiology for autoimmune hemolytic anemia was an immunologic handicap predisposing to occult viral infections.


*In '''1973''', Playfair and Marshall-Clarke developed a murine model of autoimmune hemolytic anemia. In this murine model, the mice developed autoantibodies against their own [[red blood cells]] upon injection of rat [[red blood cells]]. The rat [[red blood cells]] triggered antibody production, since the rat antigens were foreign, but the antibodies also reacted against self antigens (murine antigens) also <ref name="pmid15637139">{{cite journal| author=Mqadmi A, Zheng X, Yazdanbakhsh K| title=CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. | journal=Blood | year= 2005 | volume= 105 | issue= 9 | pages= 3746-8 | pmid=15637139 | doi=10.1182/blood-2004-12-4692 | pmc=1895013 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15637139  }} </ref> Clinically, the mice developed anemia, elevated reticulocyte count, and positive [[direct antiglobulin test]] ([[Coomb's test]]). The mice had decreased survival.<ref name="pmid15637139">{{cite journal| author=Mqadmi A, Zheng X, Yazdanbakhsh K| title=CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. | journal=Blood | year= 2005 | volume= 105 | issue= 9 | pages= 3746-8 | pmid=15637139 | doi=10.1182/blood-2004-12-4692 | pmc=1895013 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15637139  }} </ref>
*In '''1973''', Playfair and Marshall-Clarke developed a murine model of autoimmune hemolytic anemia. In this murine model, the mice developed autoantibodies against their own [[red blood cells]] upon injection of rat [[red blood cells]]. The rat [[red blood cells]] triggered [[antibody]] production, since the rat antigens were foreign, but the antibodies also reacted against self antigens (murine antigens).<ref name="pmid15637139">{{cite journal| author=Mqadmi A, Zheng X, Yazdanbakhsh K| title=CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. | journal=Blood | year= 2005 | volume= 105 | issue= 9 | pages= 3746-8 | pmid=15637139 | doi=10.1182/blood-2004-12-4692 | pmc=1895013 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15637139  }} </ref> Clinically, the mice developed anemia, elevated [[reticulocyte]] count, and positive [[direct antiglobulin test]] ([[Coomb's test]]). The mice had decreased survival.<ref name="pmid15637139">{{cite journal| author=Mqadmi A, Zheng X, Yazdanbakhsh K| title=CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. | journal=Blood | year= 2005 | volume= 105 | issue= 9 | pages= 3746-8 | pmid=15637139 | doi=10.1182/blood-2004-12-4692 | pmc=1895013 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15637139  }} </ref>


*In '''1985''', P.D. Issit described the molecular events leading to the development of autoimmune hemolytic anemia.<ref name="pmid24678166">{{cite journal| author=Chaudhary RK, Das SS| title=Autoimmune hemolytic anemia: From lab to bedside. | journal=Asian J Transfus Sci | year= 2014 | volume= 8 | issue= 1 | pages= 5-12 | pmid=24678166 | doi=10.4103/0973-6247.126681 | pmc=3943148 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24678166  }} </ref> He proposed that an autoantibody was first made due to failure of self-recognition and failure of T cell regulation. The production of the autoantibody was less likely related to changes in the [[red blood cell]] itself. Other factors that Issit proposed as contributing factors for autoantibody production were drugs, systemic inflammation, infections, and genetic factors. Next, he proposed that this autoantibody could eliminate [[red blood cells]]. He proposed that anemia was a result of excess [[red blood cell]] destruction by the autoantibody, and this could not be compensated by increased marrow production of [[red blood cells]].
*In '''1985''', P.D. Issit described the molecular events leading to the development of autoimmune hemolytic anemia.<ref name="pmid24678166">{{cite journal| author=Chaudhary RK, Das SS| title=Autoimmune hemolytic anemia: From lab to bedside. | journal=Asian J Transfus Sci | year= 2014 | volume= 8 | issue= 1 | pages= 5-12 | pmid=24678166 | doi=10.4103/0973-6247.126681 | pmc=3943148 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24678166  }} </ref> He proposed that an autoantibody was first made due to failure of self-recognition and failure of T cell regulation. The production of the autoantibody was less likely related to changes in the [[red blood cell]] itself. Other factors that Issit proposed as contributing factors for autoantibody production were drugs, systemic inflammation, infections, and genetic factors. Next, he proposed that this autoantibody could eliminate [[red blood cells]]. He proposed that anemia was a result of excess [[red blood cell]] destruction by the autoantibody, and this could not be compensated by increased marrow production of [[red blood cells]].
*In '''2001''', Ikeda and colleagues noted an association between autoimmune hemolytic anemia and multiple other autoimmune conditions.<ref name="pmid22132347">{{cite journal| author=Hegazi MO, Ahmed S| title=Atypical clinical manifestations of graves' disease: an analysis in depth. | journal=J Thyroid Res | year= 2012 | volume= 2012 | issue=  | pages= 768019 | pmid=22132347 | doi=10.1155/2012/768019 | pmc=3206356 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22132347  }} </ref> He reports on Evan's syndrome (the combination of [[immune thrombocytopenia purpura]] and autoimmune hemolytic anemia in a patient with [[Grave's disease]] (an autoimmune condition of the thyroid gland characterized by the presence of thyroid-stimulating antibodies).
*In '''2001''', M. Zecca and colleagues reported on the use of [[rituximab]] and [[intravenous immunoglobulin]] (IVIg) in the treatment of autoimmune hemolytic anemia and [[pure red cell aplasia]]. Among 15 children with warm autoimmune hemolytic anemia treated with [[rituximab]], 13 patients showed a favorable response.<ref name="pmid21547266">{{cite journal| author=Fozza C, Longinotti M| title=Use of rituximab in autoimmune hemolytic anemia associated with non-hodgkin lymphomas. | journal=Adv Hematol | year= 2011 | volume= 2011 | issue=  | pages= 960137 | pmid=21547266 | doi=10.1155/2011/960137 | pmc=3087411 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21547266  }} </ref>
*In '''2003''', S. Paydas and colleagues showed the association between marginal zone lymphoma and autoimmune hemolytic anemia. This followed multiple reports over the years demonstrating the association between a variety of lymphomas and either warm or cold autoimmune hemolytic anemia.
*In '''2007''', G. D'Arena and colleagues showed that [[rituximab]] at a dose of 375 mg/m2 IV weekly was effective in cohort of 11 patients with steroid-refractory autoimmune hemolytic anemia.<ref name="pmid21547266">{{cite journal| author=Fozza C, Longinotti M| title=Use of rituximab in autoimmune hemolytic anemia associated with non-hodgkin lymphomas. | journal=Adv Hematol | year= 2011 | volume= 2011 | issue=  | pages= 960137 | pmid=21547266 | doi=10.1155/2011/960137 | pmc=3087411 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21547266  }} </ref>


==References==
==References==
{{Reflist|2}}
{{Reflist|2}}
{{Hematology}}


[[Category:Hematology]]
[[Category:Hematology]]

Latest revision as of 18:34, 22 May 2018

Autoimmune hemolytic anemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Autoimmune hemolytic anemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Autoimmune hemolytic anemia historical perspective On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Autoimmune hemolytic anemia historical perspective

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Autoimmune hemolytic anemia historical perspective

CDC on Autoimmune hemolytic anemia historical perspective

Autoimmune hemolytic anemia historical perspective in the news

Blogs on Autoimmune hemolytic anemia historical perspective

Directions to Hospitals Treating Autoimmune hemolytic anemia

Risk calculators and risk factors for Autoimmune hemolytic anemia historical perspective

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Assosciate Editor(s)-In-Chief: Prashanth Saddala M.B.B.S; Shyam Patel [2], Irfan Dotani [3]

Overview

The history of studies on autoimmune hemolytic anemia begins in the early 20th century with the description of clinical syndromes involving low hemoglobin in the setting of a circulating antibody. Various groups reported on the production of antibodies that could bind to red blood cells at either warm or cold temperatures. Over the years, diagnostic tests were developed and optimized to determine the exact type of antibody involved in hemolysis. Treatment modalities were developed, beginning with corticosteroids. Other immunosuppressive medications, such as rituximab, were soon found to be effective in patients with hemolytic anemia.

Historical Perspective

  • In 1945, Coombs described the anti-globin test, which is now known as the Coombs' test or direct anti-globulin test.[2] Coombs was able to detect antibodies coating red blood cells, but the limit of detection was poor, with the requirement that a red blood cell needed to be coated with 100-500 molecules of IgG. This threshold was later improved using the super Coombs' test, which could detect presence of autoimmune hemolytic anemia even when fewer molecules of IgG were present on the red blood cell.
  • In 1958, Leslie Zieve conducted a retrospective study on patients with alcoholic liver disease who had hemolytic anemia.[3]
  • In 1968, Balcerzak confirmed the phenomenon of hemolytic anemia in conjunction with cholestatic jaundice and hypercholesterolemia.[3] This condition was known as Zieve syndrome, named after Leslie Zieve.
  • In 1970, Zuelzer and colleagues from Wayne State School of Medicine in Detroit described the nature and proposed etiologies of autoimmune hemolytic anemia.[4] They noted that autoantibodies could be produced by transient viral infections, such as CMV infection.[4] It was noted that there was a close correlation between the onset of infection and presence of hemolysis. Zuelzer and colleagues proposed in their manuscript that the etiology for autoimmune hemolytic anemia was an immunologic handicap predisposing to occult viral infections.
  • In 1973, Playfair and Marshall-Clarke developed a murine model of autoimmune hemolytic anemia. In this murine model, the mice developed autoantibodies against their own red blood cells upon injection of rat red blood cells. The rat red blood cells triggered antibody production, since the rat antigens were foreign, but the antibodies also reacted against self antigens (murine antigens).[5] Clinically, the mice developed anemia, elevated reticulocyte count, and positive direct antiglobulin test (Coomb's test). The mice had decreased survival.[5]
  • In 1985, P.D. Issit described the molecular events leading to the development of autoimmune hemolytic anemia.[2] He proposed that an autoantibody was first made due to failure of self-recognition and failure of T cell regulation. The production of the autoantibody was less likely related to changes in the red blood cell itself. Other factors that Issit proposed as contributing factors for autoantibody production were drugs, systemic inflammation, infections, and genetic factors. Next, he proposed that this autoantibody could eliminate red blood cells. He proposed that anemia was a result of excess red blood cell destruction by the autoantibody, and this could not be compensated by increased marrow production of red blood cells.
  • In 2001, Ikeda and colleagues noted an association between autoimmune hemolytic anemia and multiple other autoimmune conditions.[6] He reports on Evan's syndrome (the combination of immune thrombocytopenia purpura and autoimmune hemolytic anemia in a patient with Grave's disease (an autoimmune condition of the thyroid gland characterized by the presence of thyroid-stimulating antibodies).
  • In 2003, S. Paydas and colleagues showed the association between marginal zone lymphoma and autoimmune hemolytic anemia. This followed multiple reports over the years demonstrating the association between a variety of lymphomas and either warm or cold autoimmune hemolytic anemia.
  • In 2007, G. D'Arena and colleagues showed that rituximab at a dose of 375 mg/m2 IV weekly was effective in cohort of 11 patients with steroid-refractory autoimmune hemolytic anemia.[7]

References

  1. Akpoguma AO, Carlisle TL, Lentz SR (2015). "Case report: paroxysmal cold hemoglobinuria presenting during pregnancy". BMC Hematol. 15: 3. doi:10.1186/s12878-015-0023-7. PMC 4334594. PMID 25699184.
  2. 2.0 2.1 Chaudhary RK, Das SS (2014). "Autoimmune hemolytic anemia: From lab to bedside". Asian J Transfus Sci. 8 (1): 5–12. doi:10.4103/0973-6247.126681. PMC 3943148. PMID 24678166.
  3. 3.0 3.1 Liu MX, Wen XY, Leung YK, Zheng YJ, Jin MS, Jin QL; et al. (2017). "Hemolytic anemia in alcoholic liver disease: Zieve syndrome: A case report and literature review". Medicine (Baltimore). 96 (47): e8742. doi:10.1097/MD.0000000000008742. PMC 5708965. PMID 29381966.
  4. 4.0 4.1 Zuelzer WW, Mastrangelo R, Stulberg CS, Poulik MD, Page RH, Thompson RI (1970). "Autoimmune hemolytic anemia. Natural history and viral-immunologic interactions in childhood". Am J Med. 49 (1): 80–93. PMID 4194012.
  5. 5.0 5.1 Mqadmi A, Zheng X, Yazdanbakhsh K (2005). "CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia". Blood. 105 (9): 3746–8. doi:10.1182/blood-2004-12-4692. PMC 1895013. PMID 15637139.
  6. Hegazi MO, Ahmed S (2012). "Atypical clinical manifestations of graves' disease: an analysis in depth". J Thyroid Res. 2012: 768019. doi:10.1155/2012/768019. PMC 3206356. PMID 22132347.
  7. 7.0 7.1 Fozza C, Longinotti M (2011). "Use of rituximab in autoimmune hemolytic anemia associated with non-hodgkin lymphomas". Adv Hematol. 2011: 960137. doi:10.1155/2011/960137. PMC 3087411. PMID 21547266.


Template:WikiDoc Sources