UBAP1

Revision as of 07:38, 10 January 2019 by Matt Pijoan (talk | contribs) (1 revision imported)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Ubiquitin-associated protein 1 is a protein that in humans is encoded by the UBAP1 gene.[1]

This gene is a member of the UBA domain family, whose members include proteins having connections to ubiquitin and the ubiquitination pathway. The ubiquitin associated domain is thought to be a non-covalent ubiquitin binding domain consisting of a compact three helix bundle. This particular protein originates from a gene locus in a refined region on chromosome 9 undergoing loss of heterozygosity in nasopharyngeal carcinoma (NPC). Taking into account its cytogenetic location, this UBA domain family member is being studies as a putative target for mutation in nasopharyngeal carcinomas.[1]

Model organisms

Model organisms have been used in the study of UBAP1 function. A conditional knockout mouse line, called Ubap1tm1a(EUCOMM)Wtsi[6][7] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[8][9][10]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[4][11] Twenty five tests were carried out and two phenotypes were reported. Fewer homozygous mutant embryos were identified during gestation than predicted, and none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no significant abnormalities were observed in these animals.[4]

References

  1. 1.0 1.1 "Entrez Gene: UBAP1 ubiquitin associated protein 1".
  2. "Salmonella infection data for Ubap1". Wellcome Trust Sanger Institute.
  3. "Citrobacter infection data for Ubap1". Wellcome Trust Sanger Institute.
  4. 4.0 4.1 4.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248): 0. doi:10.1111/j.1755-3768.2010.4142.x.
  5. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  6. "International Knockout Mouse Consortium".
  7. "Mouse Genome Informatics".
  8. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  9. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  10. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  11. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading