Mumps laboratory tests: Difference between revisions

Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 18: Line 18:


==Serology==
==Serology==
*Significant rise in [[IgG]] or [[IgM]] antibodies may be helpful to confirm the diagnosis. However, there are many important limitations including the cross reactivity of mumps and parainfluenza viruses, that one needs to be aware of when interpreting these results.<ref>{{cite web | url = http://www.cdc.gov/mumps/lab/qa-lab-test-infect.html | title = Mumps: Lab Testing for Mumps Infection | work = Centers for Disease Control and Prevention | date = 13 April 2010 |  accessdate = 30 October 2011 }}</ref>
*Significant rise in [[IgG]] or [[IgM]] antibodies may be helpful to confirm the diagnosis.  
 
*However, laboratory confirmation of mumps in previously vaccinated or previously infected individuals is challenging, and failure to detect [[IgM|mumps IgM]] in previously vaccinated persons has been well documented including the cross reactivity of mumps and parainfluenza viruses.<ref>{{cite web | url = http://www.cdc.gov/mumps/lab/qa-lab-test-infect.html | title = Mumps: Lab Testing for Mumps Infection | work = Centers for Disease Control and Prevention | date = 13 April 2010 |  accessdate = 30 October 2011 }}</ref>
 
:'''''Persons with a history of mumps vaccination may not have detectable mumps IgM antibody regardless of timing of specimen collection.'''''[http://www.cdc.gov/mumps/lab/overview-serology.html CDC]
 
*The ability to detect [[IgM]] varies by vaccination status and is:
:*highest in unvaccinated persons (80%–100%),<ref name="pmid3833873">{{cite journal |author=Sakata H, Tsurudome M, Hishiyama M, Ito Y, Sugiura A |title=Enzyme-linked immunosorbent assay for mumps IgM antibody: comparison of IgM capture and indirect IgM assay |journal=[[Journal of Virological Methods]] |volume=12 |issue=3-4 |pages=303–11 |year=1985 |month=December |pmid=3833873 |doi= |url= |accessdate=2012-03-13}}</ref>
 
:*intermediate in one-dose vaccine recipients (60%–80%),<ref name="pmid8277201">{{cite journal |author=Briss PA, Fehrs LJ, Parker RA, Wright PF, Sannella EC, Hutcheson RH, Schaffner W |title=Sustained transmission of mumps in a highly vaccinated population: assessment of primary vaccine failure and waning vaccine-induced immunity |journal=[[The Journal of Infectious Diseases]] |volume=169 |issue=1 |pages=77–82 |year=1994 |month=January |pmid=8277201 |doi= |url=http://www.jid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=8277201 |accessdate=2012-03-13}}</ref><ref name="pmid9801337">{{cite journal |author=Narita M, Matsuzono Y, Takekoshi Y, Yamada S, Itakura O, Kubota M, Kikuta H, Togashi T |title=Analysis of mumps vaccine failure by means of avidity testing for mumps virus-specific immunoglobulin G |journal=[[Clinical and Diagnostic Laboratory Immunology]] |volume=5 |issue=6 |pages=799–803 |year=1998 |month=November |pmid=9801337 |pmc=96204 |doi= |url=http://cvi.asm.org/cgi/pmidlookup?view=long&pmid=9801337 |accessdate=2012-03-13}}</ref>
 
:*lowest in two-dose vaccine recipients (13%–14%)<ref name="pmid18184850">{{cite journal |author=Bitsko RH, Cortese MM, Dayan GH, Rota PA, Lowe L, Iversen SC, Bellini WJ |title=Detection of RNA of mumps virus during an outbreak in a population with a high level of measles, mumps, and rubella vaccine coverage |journal=[[Journal of Clinical Microbiology]] |volume=46 |issue=3 |pages=1101–3 |year=2008 |month=March |pmid=18184850 |pmc=2268349 |doi=10.1128/JCM.01803-07 |url=http://jcm.asm.org/cgi/pmidlookup?view=long&pmid=18184850 |accessdate=2012-03-13}}</ref><ref name="pmid21666213">{{cite journal |author=Rota JS, Hickman CJ, Sowers SB, Rota PA, Mercader S, Bellini WJ |title=Two case studies of modified measles in vaccinated physicians exposed to primary measles cases: high risk of infection but low risk of transmission |journal=[[The Journal of Infectious Diseases]] |volume=204 Suppl 1 |issue= |pages=S559–63 |year=2011 |month=July |pmid=21666213 |doi=10.1093/infdis/jir098 |url=http://www.jid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=21666213 |accessdate=2012-03-13}}</ref>


==Virus Isolation==
==Virus Isolation==

Revision as of 20:11, 13 March 2012

Mumps Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Mumps from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

CT

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Mumps laboratory tests On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Mumps laboratory tests

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Mumps laboratory tests

CDC on Mumps laboratory tests

Mumps laboratory tests in the news

Blogs on Mumps laboratory tests

Directions to Hospitals Treating Mumps

Risk calculators and risk factors for Mumps laboratory tests

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Lakshmi Gopalakrishnan, M.B.B.S. [2]

Overview

Laboratory testing for mumps virus can be useful, and may include virus isolation from swabs of affected salivary ducts, antigen detection by PCR, and serologic testing for IgM antibody or a significant rise in IgG antibody. However, there are many important caveats to be aware of when interpreting the results.[1]

Initial Lab Tests

Complete blood count with differential:

Serum studies:

Serology

  • Significant rise in IgG or IgM antibodies may be helpful to confirm the diagnosis.
  • However, laboratory confirmation of mumps in previously vaccinated or previously infected individuals is challenging, and failure to detect mumps IgM in previously vaccinated persons has been well documented including the cross reactivity of mumps and parainfluenza viruses.[3]
Persons with a history of mumps vaccination may not have detectable mumps IgM antibody regardless of timing of specimen collection.CDC
  • The ability to detect IgM varies by vaccination status and is:
  • highest in unvaccinated persons (80%–100%),[4]
  • intermediate in one-dose vaccine recipients (60%–80%),[5][6]
  • lowest in two-dose vaccine recipients (13%–14%)[7][8]

Virus Isolation

  • Infected patients remain contagious approximately 6 days before the onset of parotitis until about 9 days after the onset of parotitis, during which time the virus can be isolated. [9]
  • Virus can be isolated in a cell culture inoculated with the virus obtained from swabs of affected salivary ducts, serum or urine.

References

  1. "Mumps: Lab Testing for Mumps Infection". Centers for Disease Control and Prevention. 13 April 2010. Retrieved 30 October 2011.
  2. Skrha J, Stĕpán J, Sixtová E (1979). "Amylase isoenzymes in mumps". European Journal of Pediatrics. 132 (2): 99–105. PMID 499265. Unknown parameter |month= ignored (help); |access-date= requires |url= (help)
  3. "Mumps: Lab Testing for Mumps Infection". Centers for Disease Control and Prevention. 13 April 2010. Retrieved 30 October 2011.
  4. Sakata H, Tsurudome M, Hishiyama M, Ito Y, Sugiura A (1985). "Enzyme-linked immunosorbent assay for mumps IgM antibody: comparison of IgM capture and indirect IgM assay". Journal of Virological Methods. 12 (3–4): 303–11. PMID 3833873. Unknown parameter |month= ignored (help); |access-date= requires |url= (help)
  5. Briss PA, Fehrs LJ, Parker RA, Wright PF, Sannella EC, Hutcheson RH, Schaffner W (1994). "Sustained transmission of mumps in a highly vaccinated population: assessment of primary vaccine failure and waning vaccine-induced immunity". The Journal of Infectious Diseases. 169 (1): 77–82. PMID 8277201. Retrieved 2012-03-13. Unknown parameter |month= ignored (help)
  6. Narita M, Matsuzono Y, Takekoshi Y, Yamada S, Itakura O, Kubota M, Kikuta H, Togashi T (1998). "Analysis of mumps vaccine failure by means of avidity testing for mumps virus-specific immunoglobulin G". Clinical and Diagnostic Laboratory Immunology. 5 (6): 799–803. PMC 96204. PMID 9801337. Retrieved 2012-03-13. Unknown parameter |month= ignored (help)
  7. Bitsko RH, Cortese MM, Dayan GH, Rota PA, Lowe L, Iversen SC, Bellini WJ (2008). "Detection of RNA of mumps virus during an outbreak in a population with a high level of measles, mumps, and rubella vaccine coverage". Journal of Clinical Microbiology. 46 (3): 1101–3. doi:10.1128/JCM.01803-07. PMC 2268349. PMID 18184850. Retrieved 2012-03-13. Unknown parameter |month= ignored (help)
  8. Rota JS, Hickman CJ, Sowers SB, Rota PA, Mercader S, Bellini WJ (2011). "Two case studies of modified measles in vaccinated physicians exposed to primary measles cases: high risk of infection but low risk of transmission". The Journal of Infectious Diseases. 204 Suppl 1: S559–63. doi:10.1093/infdis/jir098. PMID 21666213. Retrieved 2012-03-13. Unknown parameter |month= ignored (help)
  9. UTZ JP, HOUK VN, ALLING DW (1964). "CLINICAL AND LABORATORY STUDIES OF MUMPS". The New England Journal of Medicine. 270: 1283–6. doi:10.1056/NEJM196406112702404. PMID 14133666. Retrieved 2012-03-09. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources