Subependymal giant cell astrocytoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 11: Line 11:
*It is classified as a WHO grade I central nervous system tumor.
*It is classified as a WHO grade I central nervous system tumor.
*It is of glioneuronal origin and typically arises from the caudothalamic groove adjacent to the foramen of monro.<ref name="RothRoach2013">{{cite journal|last1=Roth|first1=Jonathan|last2=Roach|first2=E. Steve|last3=Bartels|first3=Ute|last4=Jóźwiak|first4=Sergiusz|last5=Koenig|first5=Mary Kay|last6=Weiner|first6=Howard L.|last7=Franz|first7=David N.|last8=Wang|first8=Henry Z.|title=Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012|journal=Pediatric Neurology|volume=49|issue=6|year=2013|pages=439–444|issn=08878994|doi=10.1016/j.pediatrneurol.2013.08.017}}</ref><ref name="LouisOhgaki2007">{{cite journal|last1=Louis|first1=David N.|last2=Ohgaki|first2=Hiroko|last3=Wiestler|first3=Otmar D.|last4=Cavenee|first4=Webster K.|last5=Burger|first5=Peter C.|last6=Jouvet|first6=Anne|last7=Scheithauer|first7=Bernd W.|last8=Kleihues|first8=Paul|title=The 2007 WHO Classification of Tumours of the Central Nervous System|journal=Acta Neuropathologica|volume=114|issue=2|year=2007|pages=97–109|issn=0001-6322|doi=10.1007/s00401-007-0243-4}}</ref>
*It is of glioneuronal origin and typically arises from the caudothalamic groove adjacent to the foramen of monro.<ref name="RothRoach2013">{{cite journal|last1=Roth|first1=Jonathan|last2=Roach|first2=E. Steve|last3=Bartels|first3=Ute|last4=Jóźwiak|first4=Sergiusz|last5=Koenig|first5=Mary Kay|last6=Weiner|first6=Howard L.|last7=Franz|first7=David N.|last8=Wang|first8=Henry Z.|title=Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012|journal=Pediatric Neurology|volume=49|issue=6|year=2013|pages=439–444|issn=08878994|doi=10.1016/j.pediatrneurol.2013.08.017}}</ref><ref name="LouisOhgaki2007">{{cite journal|last1=Louis|first1=David N.|last2=Ohgaki|first2=Hiroko|last3=Wiestler|first3=Otmar D.|last4=Cavenee|first4=Webster K.|last5=Burger|first5=Peter C.|last6=Jouvet|first6=Anne|last7=Scheithauer|first7=Bernd W.|last8=Kleihues|first8=Paul|title=The 2007 WHO Classification of Tumours of the Central Nervous System|journal=Acta Neuropathologica|volume=114|issue=2|year=2007|pages=97–109|issn=0001-6322|doi=10.1007/s00401-007-0243-4}}</ref>
*The inactivation of the tumor suppressor genes TSC1 (on chromosome 9q34) and/or TSC2 (on chromosome 16p13) results in the formation of subependymal giant cell astrocytoma in tuberous sclerosis patients. TSC1 and TSC2 encodes the proteins tuberin and hamartin, respectively.
*The inactivation of the tumor suppressor genes TSC1 (on chromosome 9q34) and/or TSC2 (on chromosome 16p13) results in the formation of subependymal giant cell astrocytoma in tuberous sclerosis patients. TSC1 and TSC2 encodes the proteins tuberin and hamartin, respectively. The tuberin/harmatin complex suppresses Ras homolog enriched in brain (RHES) which functions as a direct activator of the mammalian target of rapamycin (mTOR)
*It is commonly located in the ventricles but a few may have extraventricular locations.<ref name="RothRoach2013">{{cite journal|last1=Roth|first1=Jonathan|last2=Roach|first2=E. Steve|last3=Bartels|first3=Ute|last4=Jóźwiak|first4=Sergiusz|last5=Koenig|first5=Mary Kay|last6=Weiner|first6=Howard L.|last7=Franz|first7=David N.|last8=Wang|first8=Henry Z.|title=Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012|journal=Pediatric Neurology|volume=49|issue=6|year=2013|pages=439–444|issn=08878994|doi=10.1016/j.pediatrneurol.2013.08.017}}</ref>
*It is commonly located in the ventricles but a few may have extraventricular locations.<ref name="RothRoach2013">{{cite journal|last1=Roth|first1=Jonathan|last2=Roach|first2=E. Steve|last3=Bartels|first3=Ute|last4=Jóźwiak|first4=Sergiusz|last5=Koenig|first5=Mary Kay|last6=Weiner|first6=Howard L.|last7=Franz|first7=David N.|last8=Wang|first8=Henry Z.|title=Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012|journal=Pediatric Neurology|volume=49|issue=6|year=2013|pages=439–444|issn=08878994|doi=10.1016/j.pediatrneurol.2013.08.017}}</ref>
*Subependymal giant cell astrocytoma is believed to arise from a [[subependymal|subependymal nodule]] present in the ventricular wall of a patient with [[tuberous sclerosis]] and is composed of large ganglioid astrocytes.<ref name=Pathogenesisofsega1>Pathology of subependymal giant cell astrocytoma. Dr. Bruno Di Muzio and Dr. Jeremy Jones et al. Radiopaedia 2015. http://radiopaedia.org/articles/subependymal-giant-cell-astrocytoma. Accessed on November 2, 2015</ref><ref name="pmid25977907">{{cite journal| author=Jung TY, Kim YH, Jung S, Baek HJ, Lee KH| title=The clinical characteristics of subependymal giant cell astrocytoma: five cases. | journal=Brain Tumor Res Treat | year= 2015 | volume= 3 | issue= 1 | pages= 44-7 | pmid=25977907 | doi=10.14791/btrt.2015.3.1.44 | pmc=PMC4426277 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25977907  }} </ref><ref name="pmid25977907">{{cite journal| author=Jung TY, Kim YH, Jung S, Baek HJ, Lee KH| title=The clinical characteristics of subependymal giant cell astrocytoma: five cases. | journal=Brain Tumor Res Treat | year= 2015 | volume= 3 | issue= 1 | pages= 44-7 | pmid=25977907 | doi=10.14791/btrt.2015.3.1.44 | pmc=4426277 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25977907  }} </ref>
*Subependymal giant cell astrocytoma is believed to arise from a [[subependymal|subependymal nodule]] present in the ventricular wall of a patient with [[tuberous sclerosis]] and is composed of large ganglioid astrocytes.<ref name=Pathogenesisofsega1>Pathology of subependymal giant cell astrocytoma. Dr. Bruno Di Muzio and Dr. Jeremy Jones et al. Radiopaedia 2015. http://radiopaedia.org/articles/subependymal-giant-cell-astrocytoma. Accessed on November 2, 2015</ref><ref name="pmid25977907">{{cite journal| author=Jung TY, Kim YH, Jung S, Baek HJ, Lee KH| title=The clinical characteristics of subependymal giant cell astrocytoma: five cases. | journal=Brain Tumor Res Treat | year= 2015 | volume= 3 | issue= 1 | pages= 44-7 | pmid=25977907 | doi=10.14791/btrt.2015.3.1.44 | pmc=PMC4426277 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25977907  }} </ref><ref name="pmid25977907">{{cite journal| author=Jung TY, Kim YH, Jung S, Baek HJ, Lee KH| title=The clinical characteristics of subependymal giant cell astrocytoma: five cases. | journal=Brain Tumor Res Treat | year= 2015 | volume= 3 | issue= 1 | pages= 44-7 | pmid=25977907 | doi=10.14791/btrt.2015.3.1.44 | pmc=4426277 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25977907  }} </ref>

Revision as of 22:43, 9 October 2019

Subependymal giant cell astrocytoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Subependymal Giant Cell Astrocytoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Subependymal giant cell astrocytoma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Subependymal giant cell astrocytoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Subependymal giant cell astrocytoma pathophysiology

CDC on Subependymal giant cell astrocytoma pathophysiology

Subependymal giant cell astrocytoma pathophysiology in the news

Blogs on Subependymal giant cell astrocytoma pathophysiology

Directions to Hospitals Treating Ependymoma

Risk calculators and risk factors for Subependymal giant cell astrocytoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Sujit Routray, M.D. [2]

Overview

Subependymal giant cell astrocytoma is believed to arise from a subependymal nodule present in the ventricular wall of a patient with tuberous sclerosis.[1][2] Genes involved in the pathogenesis of subependymal giant cell astrocytoma include TSC1 and TSC2. Subependymal giant cell astrocytoma is almost exclusively associated with tuberous sclerosis complex, which is an autosomal dominant disorder.[3] On gross pathology, subependymal giant cell astrocytoma is characterized by a large, fleshy, well-circumscribed intraventricular mass in the wall of the lateral ventricle near the foramen of Monro, that does not invade into the periventricular parenchyma.[4][5] On microscopic histopathological analysis, subependymal giant cell astrocytoma is characterized by three types of cells (fibrillated elongated spindle cells, swollen gemistocytic-like cells, and giant ganglion-like cells) with nuclear pseudoinclusions and rosettes, perivascular inflammatory cells, and glassy eosinophilic cytoplasm.[6][7] Subependymal giant cell astrocytoma is demonstrated by positivity to tumor markers such as GFAP, vimentin, S-100, neurofilament, and synaptophysin.[2][8][9][10]

Pathophysiology

Pathogenesis

  • Subependymal giant cell astrocytoma is a rare, benign tumor predominantly associated with tuberous sclerosis complex although a few cases have been reported in patients without evidence of tuberous sclerosis.[11]
  • It is classified as a WHO grade I central nervous system tumor.
  • It is of glioneuronal origin and typically arises from the caudothalamic groove adjacent to the foramen of monro.[3][12]
  • The inactivation of the tumor suppressor genes TSC1 (on chromosome 9q34) and/or TSC2 (on chromosome 16p13) results in the formation of subependymal giant cell astrocytoma in tuberous sclerosis patients. TSC1 and TSC2 encodes the proteins tuberin and hamartin, respectively. The tuberin/harmatin complex suppresses Ras homolog enriched in brain (RHES) which functions as a direct activator of the mammalian target of rapamycin (mTOR)
  • It is commonly located in the ventricles but a few may have extraventricular locations.[3]
  • Subependymal giant cell astrocytoma is believed to arise from a subependymal nodule present in the ventricular wall of a patient with tuberous sclerosis and is composed of large ganglioid astrocytes.[1][2][2]
  • Subependymal giant cell astrocytoma has both glial and neuronal components.[13]
  • On Immunohistochemistry, the tumor cells test positive for the glial fibrillary acidic protein and microtubule-associated protein 2.[2]
  • The various risk factors that may lead to the transformation of a subependymal nodule into a subependymal giant cell astrocytic tumor include:[6]
Subependymal giant cell astrocytoma Subependymal nodule
  • Large-sized
  • Small-sized
  • Tumor mass grows in size
  • Remains stable in size
  • Mass effect
  • No mass effect
  • Located in the caudothalamic groove
  • Located in the ependymal lining of the lateral ventricles along the caudate nucleus
  • No calcification
  • Calcification present
  • Contrast enhancement present
  • Nonenhancing lesions
  • Subependymal giant cell astrocytoma is a major cause of tuberous sclerosis complex-related morbidity and mortality during the pediatrics age, as it is seen in 10 to 20% of these patients.[2]

Genetic

Genes involved in the pathogenesis of subependymal giant cell astrocytoma include:[14]

  • TSC1
  • TSC2

Associated Conditions

Conditions associated with subependymal giant cell astrocytoma include:[14]

  • Tuberous sclerosis

Gross Pathology

  • On gross pathology, subependymal giant cell astrocytoma is characterized by a large, fleshy, well-circumscribed intraventricular mass in the wall of the lateral ventricle near the foramen of Monro, that does not invade into the periventricular parenchyma.[4][5]
  • Subependymal giant cell astrocytoma typically arises at the caudothalamic groove adjacent to the foramen of Monro.[3]
  • Other common intracranial sites associated with subependymal giant cell astrocytoma include:[3]

Gallery

Microscopic Pathology

On microscopic histopathological analysis, subependymal giant cell astrocytoma is characterized by:[2][6][7][15][11]

  • Pleomorphic multinuleated eosinophilic cells
  • Streams of elongated tumor cells with abundant cytoplasm
  • Clustered cells arranged in a perivascular pseudopallisading pattern
  • Mitoses
  • Endothelial proliferations
  • Necrosis
  • Atypia
  • Vesicular nuclei
  • Occasional prominent nucleoli
  • Tumor cells positive on immunohistochemistry for the glial fibrillary acidic protein and microtubule-associated protein 2

Immunohistochemistry

Subependymal giant cell astrocytoma is demonstrated by positivity to tumor markers such as:[2][6][8][9][10]

Gallery

References

  1. 1.0 1.1 Pathology of subependymal giant cell astrocytoma. Dr. Bruno Di Muzio and Dr. Jeremy Jones et al. Radiopaedia 2015. http://radiopaedia.org/articles/subependymal-giant-cell-astrocytoma. Accessed on November 2, 2015
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Jung TY, Kim YH, Jung S, Baek HJ, Lee KH (2015). "The clinical characteristics of subependymal giant cell astrocytoma: five cases". Brain Tumor Res Treat. 3 (1): 44–7. doi:10.14791/btrt.2015.3.1.44. PMC 4426277. PMID 25977907.
  3. 3.0 3.1 3.2 3.3 3.4 Roth, Jonathan; Roach, E. Steve; Bartels, Ute; Jóźwiak, Sergiusz; Koenig, Mary Kay; Weiner, Howard L.; Franz, David N.; Wang, Henry Z. (2013). "Subependymal Giant Cell Astrocytoma: Diagnosis, Screening, and Treatment. Recommendations From the International Tuberous Sclerosis Complex Consensus Conference 2012". Pediatric Neurology. 49 (6): 439–444. doi:10.1016/j.pediatrneurol.2013.08.017. ISSN 0887-8994.
  4. 4.0 4.1 Final Diagnosis-Subependymal giant cell astrocytoma. upmc.edu 2015. http://path.upmc.edu/cases/case179/dx.html. Accessed on November 4, 2015
  5. 5.0 5.1 5.2 Gross features of subependymal giant cell astrocytoma. Libre pathology 2015. http://librepathology.org/wiki/index.php/Subependymal_giant_cell_astrocytoma. Accessed on November 2, 2015
  6. 6.0 6.1 6.2 6.3 Ouyang, Taohui; Zhang, Na; Benjamin, Thomas; Wang, Long; Jiao, Jiantong; Zhao, Yiqing; Chen, Jian (2014). "Subependymal giant cell astrocytoma: current concepts, management, and future directions". Child's Nervous System. 30 (4): 561–570. doi:10.1007/s00381-014-2383-x. ISSN 0256-7040.
  7. 7.0 7.1 Microscopic features of subependymal giant cell astrocytoma. Libre pathology 2015. http://librepathology.org/wiki/index.php/Subependymal_giant_cell_astrocytoma. Accessed on November 2, 2015
  8. 8.0 8.1 IHC features of subependymal giant cell astrocytoma. Libre pathology 2015. http://librepathology.org/wiki/index.php/Subependymal_giant_cell_astrocytoma. Accessed on October 2, 2015
  9. 9.0 9.1 Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, Hukee MJ; et al. (1995). "Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study". Acta Neuropathol. 90 (4): 387–99. PMID 8546029.
  10. 10.0 10.1 Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR (1996). "Immunohistochemical characterization of subependymal giant cell astrocytomas". Acta Neuropathol. 91 (4): 368–75. PMID 8928613.
  11. 11.0 11.1 Beaumont, Thomas L.; Godzik, Jakub; Dahiya, Sonika; Smyth, Matthew D. (2015). "Subependymal giant cell astrocytoma in the absence of tuberous sclerosis complex: case report". Journal of Neurosurgery: Pediatrics. 16 (2): 134–137. doi:10.3171/2015.1.PEDS13146. ISSN 1933-0707.
  12. Louis, David N.; Ohgaki, Hiroko; Wiestler, Otmar D.; Cavenee, Webster K.; Burger, Peter C.; Jouvet, Anne; Scheithauer, Bernd W.; Kleihues, Paul (2007). "The 2007 WHO Classification of Tumours of the Central Nervous System". Acta Neuropathologica. 114 (2): 97–109. doi:10.1007/s00401-007-0243-4. ISSN 0001-6322.
  13. Jóźwiak S, Nabbout R, Curatolo P, participants of the TSC Consensus Meeting for SEGA and Epilepsy Management (2013). "Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): Clinical recommendations". Eur J Paediatr Neurol. 17 (4): 348–52. doi:10.1016/j.ejpn.2012.12.008. PMID 23391693.
  14. 14.0 14.1 Campen CJ, Porter BE (2011). "Subependymal Giant Cell Astrocytoma (SEGA) Treatment Update". Curr Treat Options Neurol. 13 (4): 380–5. doi:10.1007/s11940-011-0123-z. PMC 3130084. PMID 21465222.
  15. Shepherd CW, Scheithauer BW, Gomez MR, Altermatt HJ, Katzmann JA (1991). "Subependymal giant cell astrocytoma: a clinical, pathological, and flow cytometric study". Neurosurgery. 28 (6): 864–8. PMID 2067610.
  16. Microscopic images of subependymal giant cell astrocytoma. Libre pathology 2015. http://librepathology.org/wiki/index.php/Subependymal_giant_cell_astrocytoma. Accessed on November 2, 2015


Template:WikiDoc Sources