Remote sensing technology

Jump to navigation Jump to search

WikiDoc Resources for Remote sensing technology

Articles

Most recent articles on Remote sensing technology

Most cited articles on Remote sensing technology

Review articles on Remote sensing technology

Articles on Remote sensing technology in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Remote sensing technology

Images of Remote sensing technology

Photos of Remote sensing technology

Podcasts & MP3s on Remote sensing technology

Videos on Remote sensing technology

Evidence Based Medicine

Cochrane Collaboration on Remote sensing technology

Bandolier on Remote sensing technology

TRIP on Remote sensing technology

Clinical Trials

Ongoing Trials on Remote sensing technology at Clinical Trials.gov

Trial results on Remote sensing technology

Clinical Trials on Remote sensing technology at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Remote sensing technology

NICE Guidance on Remote sensing technology

NHS PRODIGY Guidance

FDA on Remote sensing technology

CDC on Remote sensing technology

Books

Books on Remote sensing technology

News

Remote sensing technology in the news

Be alerted to news on Remote sensing technology

News trends on Remote sensing technology

Commentary

Blogs on Remote sensing technology

Definitions

Definitions of Remote sensing technology

Patient Resources / Community

Patient resources on Remote sensing technology

Discussion groups on Remote sensing technology

Patient Handouts on Remote sensing technology

Directions to Hospitals Treating Remote sensing technology

Risk calculators and risk factors for Remote sensing technology

Healthcare Provider Resources

Symptoms of Remote sensing technology

Causes & Risk Factors for Remote sensing technology

Diagnostic studies for Remote sensing technology

Treatment of Remote sensing technology

Continuing Medical Education (CME)

CME Programs on Remote sensing technology

International

Remote sensing technology en Espanol

Remote sensing technology en Francais

Business

Remote sensing technology in the Marketplace

Patents on Remote sensing technology

Experimental / Informatics

List of terms related to Remote sensing technology

In telemetry, Remote sensing technology is defined as the "observation and acquisition of physical data from a distance by viewing and making measurements from a distance or receiving transmitted data from observations made at distant location."[1]

Medical imaging

Transdermal optical imaging, using machine learning and video from a smartphone camera and using advanced machine learning may[2][3] or may not[4] be able to determine a subject's blood pressure.

Imaging may also be able to detect:

Retina

Imaging of the retina, using deep-learning trained on data from 284,335 patients, may predict[13]:

  • age (mean absolute error within 3.26 years)
  • gender (area under the receiver operating characteristic curve (AUC) = 0.97)
  • smoking status (AUC = 0.71)
  • systolic blood pressure (mean absolute error within 11.23 mmHg)
  • major adverse cardiac events (AUC = 0.70)

Retina imaging with deep learning can detect papilledema[14].

Other

Pain sensitivity has been measured[15].

Thermal image sensors may be helpful[16].

Legal issues

Legal issues have been debated about the role of transparency and human oversight in interpreting information derived from deep learning[17][18].

Limitations

The ability to generalize the accuracy of image analyses to images different that those that trained the system may be limited[19].

See also

External links

References

  1. Anonymous (2024), Remote sensing technology (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. 2.0 2.1 Luo H, Yang D, Barszczyk A, Vempala N, Wei J, Wu SJ; et al. (2019). "Smartphone-Based Blood Pressure Measurement Using Transdermal Optical Imaging Technology". Circ Cardiovasc Imaging. 12 (8): e008857. doi:10.1161/CIRCIMAGING.119.008857. PMID 31382766.
  3. 3.0 3.1 Gonzalez Viejo C, Fuentes S, Torrico DD, Dunshea FR (2018). "Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate". Sensors (Basel). 18 (6). doi:10.3390/s18061802. PMC 6022164. PMID 29865289.
  4. Raichle CJ, Eckstein J, Lapaire O, Leonardi L, Brasier N, Vischer AS; et al. (2018). "Performance of a Blood Pressure Smartphone App in Pregnant Women: The iPARR Trial (iPhone App Compared With Standard RR Measurement)". Hypertension. 71 (6): 1164–1169. doi:10.1161/HYPERTENSIONAHA.117.10647. PMID 29632098.
  5. Lomaliza, Jean-Pierre; Park, Hanhoon (2019). "Improved Heart-Rate Measurement from Mobile Face Videos". Electronics. 8 (6): 663. doi:10.3390/electronics8060663. ISSN 2079-9292.
  6. O'Sullivan JW, Grigg S, Crawford W, Turakhia MP, Perez M, Ingelsson E; et al. (2020). "Accuracy of Smartphone Camera Applications for Detecting Atrial Fibrillation: A Systematic Review and Meta-analysis". JAMA Netw Open. 3 (4): e202064. doi:10.1001/jamanetworkopen.2020.2064. PMC 7125433 Check |pmc= value (help). PMID 32242908 Check |pmid= value (help).
  7. Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S; et al. (2018). "A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement". J Hypertens. 36 (3): 472–478. doi:10.1097/HJH.0000000000001634. PMC 5796427. PMID 29384983.
  8. Khalid SG, Zhang J, Chen F, Zheng D (2018). "Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches". J Healthc Eng. 2018: 1548647. doi:10.1155/2018/1548647. PMC 6218731. PMID 30425819.
  9. Wei B, He X, Zhang C, Wu X (2017). "Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions". Biomed Eng Online. 16 (1): 17. doi:10.1186/s12938-016-0300-0. PMC 5439118. PMID 28249595.
  10. Taylor JA, Stout JW, de Greef L, Goel M, Patel S, Chung EK; et al. (2017). "Use of a Smartphone App to Assess Neonatal Jaundice". Pediatrics. 140 (3). doi:10.1542/peds.2017-0312. PMC 5574723. PMID 28842403.
  11. Hermosilla, Gabriel; Verdugo, José Luis; Farias, Gonzalo; Vera, Esteban; Pizarro, Francisco; Machuca, Margarita (2018). "Face Recognition and Drunk Classification Using Infrared Face Images". Journal of Sensors. 2018: 1–8. doi:10.1155/2018/5813514. ISSN 1687-725X.
  12. 12.0 12.1 Kosilek, R P; Frohner, R; Würtz, R P; Berr, C M; Schopohl, J; Reincke, M; Schneider, H J (2015). "Diagnostic use of facial image analysis software in endocrine and genetic disorders: review, current results and future perspectives". European Journal of Endocrinology. 173 (4): M39–M44. doi:10.1530/EJE-15-0429. ISSN 0804-4643.
  13. Poplin, Ryan; Varadarajan, Avinash V.; Blumer, Katy; Liu, Yun; McConnell, Michael V.; Corrado, Greg S.; Peng, Lily; Webster, Dale R. (2018). "Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning". Nature Biomedical Engineering. 2 (3): 158–164. doi:10.1038/s41551-018-0195-0. ISSN 2157-846X.
  14. Milea, Dan; Najjar, Raymond P.; Zhubo, Jiang; Ting, Daniel; Vasseneix, Caroline; Xu, Xinxing; Aghsaei Fard, Masoud; Fonseca, Pedro; Vanikieti, Kavin; Lagrèze, Wolf A.; La Morgia, Chiara; Cheung, Carol Y.; Hamann, Steffen; Chiquet, Christophe; Sanda, Nicolae; Yang, Hui; Mejico, Luis J.; Rougier, Marie-Bénédicte; Kho, Richard; Thi Ha Chau, Tran; Singhal, Shweta; Gohier, Philippe; Clermont-Vignal, Catherine; Cheng, Ching-Yu; Jonas, Jost B.; Yu-Wai-Man, Patrick; Fraser, Clare L.; Chen, John J.; Ambika, Selvakumar; Miller, Neil R.; Liu, Yong; Newman, Nancy J.; Wong, Tien Y.; Biousse, Valérie (2020). "Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs". New England Journal of Medicine. 382 (18): 1687–1695. doi:10.1056/NEJMoa1917130. ISSN 0028-4793.
  15. McIntyre MH, 23andMe Research Team. Kless A, Hein P, Field M, Tung JY (2020). "Validity of the cold pressor test and pain sensitivity questionnaire via online self-administration". PLoS One. 15 (4): e0231697. doi:10.1371/journal.pone.0231697. PMC 7162430 Check |pmc= value (help). PMID 32298348 Check |pmid= value (help).
  16. Negishi T, Abe S, Matsui T, Liu H, Kurosawa M, Kirimoto T; et al. (2020). "Contactless Vital Signs Measurement System Using RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza". Sensors (Basel). 20 (8). doi:10.3390/s20082171. PMC 7218727 Check |pmc= value (help). PMID 32294973 Check |pmid= value (help).
  17. American Medical Association (2018). AMA passes first policy recommendations on augmented intelligence. Available at https://www.ama-assn.org/press-center/press-releases/ama-passes-first-policy-recommendations-augmented-intelligence
  18. Euopean Commission (2020). White paper: On Artificial Intelligence - A European approach to excellence and trust. Available at https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
  19. Heaven, WD. Google’s medical AI was super accurate in a lab. Real life was a different story.MIT Technology Review 2020. Available at https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/