Fatty acid-binding protein 2 (FABP2) also known as Intestinal-type fatty acid-binding protein (I-FABP) is a protein that in humans is encoded by the FABP2gene.[1]
The intracellular fatty acid-binding proteins (FABPs) belong to a multigene family with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form 14-15 kDa proteins and are thought to participate in the uptake, intracellular metabolism and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding protein 2 gene contains four exons and is an abundant cytosolic protein in small intestine epithelial cells.[1]
Clinical significance
This gene has a polymorphism at codon 54 that identified an alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance.[1]
Glatz JF, Luiken JJ, van Nieuwenhoven FA, Van der Vusse GJ (1997). "Molecular mechanism of cellular uptake and intracellular translocation of fatty acids". Prostaglandins Leukot. Essent. Fatty Acids. 57 (1): 3–9. doi:10.1016/S0952-3278(97)90485-3. PMID9250601.
Storch J, Thumser AE (2000). "The fatty acid transport function of fatty acid-binding proteins". Biochim. Biophys. Acta. 1486 (1): 28–44. doi:10.1016/s1388-1981(00)00046-9. PMID10856711.
Edwards A, Hammond HA, Jin L, et al. (1992). "Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups". Genomics. 12 (2): 241–53. doi:10.1016/0888-7543(92)90371-X. PMID1740333.
Sweetser DA, Birkenmeier EH, Klisak IJ, et al. (1987). "The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships". J. Biol. Chem. 262 (33): 16060–71. PMID2824476.
Lowe JB, Boguski MS, Sweetser DA, et al. (1985). "Human liver fatty acid binding protein. Isolation of a full length cDNA and comparative sequence analyses of orthologous and paralogous proteins". J. Biol. Chem. 260 (6): 3413–7. PMID3838313.
Goold RD, diSibio GL, Xu H, et al. (1993). "The development of sequence-tagged sites for human chromosome 4". Hum. Mol. Genet. 2 (8): 1271–88. doi:10.1093/hmg/2.8.1271. PMID8401509.
Prochazka M, Lillioja S, Tait JF, et al. (1993). "Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians". Diabetes. 42 (4): 514–9. doi:10.2337/diabetes.42.4.514. PMID8454101.
Hegele RA, Harris SB, Hanley AJ, et al. (1997). "Genetic variation of intestinal fatty acid-binding protein associated with variation in body mass in aboriginal Canadians". J. Clin. Endocrinol. Metab. 81 (12): 4334–7. doi:10.1210/jc.81.12.4334. PMID8954037.
Zhang F, Lücke C, Baier LJ, et al. (1997). "Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit". J. Biomol. NMR. 9 (3): 213–28. doi:10.1023/A:1018666522787. PMID9204553.
Darimont C, Gradoux N, Cumin F, et al. (1998). "Differential regulation of intestinal and liver fatty acid-binding proteins in human intestinal cell line (Caco-2): role of collagen". Exp. Cell Res. 244 (2): 441–7. doi:10.1006/excr.1998.4186. PMID9806794.
Darimont C, Gradoux N, de Pover A (1999). "Epidermal growth factor regulates fatty acid uptake and metabolism in Caco-2 cells". Am. J. Physiol. 276 (3 Pt 1): G606–12. PMID10070036.
Carlsson M, Orho-Melander M, Hedenbro J, et al. (2000). "The T 54 allele of the intestinal fatty acid-binding protein 2 is associated with a parental history of stroke". J. Clin. Endocrinol. Metab. 85 (8): 2801–4. doi:10.1210/jc.85.8.2801. PMID10946885.