Electrophoresis
WikiDoc Resources for Electrophoresis 
Articles 

Most recent articles on Electrophoresis Most cited articles on Electrophoresis 
Media 
Powerpoint slides on Electrophoresis 
Evidence Based Medicine 
Clinical Trials 
Ongoing Trials on Electrophoresis at Clinical Trials.gov Trial results on Electrophoresis Clinical Trials on Electrophoresis at Google

Guidelines / Policies / Govt 
US National Guidelines Clearinghouse on Electrophoresis NICE Guidance on Electrophoresis

Books 
News 
Commentary 
Definitions 
Patient Resources / Community 
Patient resources on Electrophoresis Discussion groups on Electrophoresis Patient Handouts on Electrophoresis Directions to Hospitals Treating Electrophoresis Risk calculators and risk factors for Electrophoresis

Healthcare Provider Resources 
Causes & Risk Factors for Electrophoresis 
Continuing Medical Education (CME) 
International 

Business 
Experimental / Informatics 
Overview
 For specific types of electrophoresis (for example, the process of administering medicine, iontophoresis), see electrophoresis (disambiguation).
Electrophoresis is the movement of an electrically charged substance under the influence of an electric field. This movement is due to the Coulomb force, which may be related to fundamental electrical properties of the body under study and the ambient electrical conditions by the equation given below. F is the Coulomb force, q is the charge carried by the body, E is the electric field^{[1]}:
 <math>\bar F_e\ = q \bar E\ </math>.
The resulting electrophoretic migration is countered by forces of friction such that the rate of migration is constant in a constant and homogeneous electric field:
 <math>F_f\ =\ vf </math>
Where v is the velocity and f is the frictional coefficient.
 <math>q \bar E\ = vf </math>
The electrophoretic mobility <math>\mu</math> is defined as followed.
 <math>\mu = {v \over E} = {q \over f}</math>
The expression above applied only to ions at a concentration approaching 0 and in a nonconductive solvent. Polyionic molecules are surrounded by a cloud of counterions which alter the effective electric field applied on the ions to be separated. This renders the previous expression a poor approximation of what really happens in an electrophoretic apparatus.
The mobility depends on both the particle properties (e.g., surface charge density and size) and solution properties (e.g., ionic strength, electric permittivity, and pH). For high ionic strengths, an approximate expression for the electrophoretic mobility (m².V/s) is given by the Smoluchowski equation,
 <math>\mu_e = \frac{\epsilon\epsilon_0\zeta}{\eta}</math>,
where <math>\epsilon</math> is the dielectric constant of the liquid (–), <math>\epsilon_0</math> is the permittivity of free space (C².N.m^{2}), <math>\eta</math> is the viscosity of the liquid (Pa.s), and <math>\zeta</math> is the zeta potential (i.e., the electrokinetic potential, taken as equal to the surface potential) of the particle (V).
Applications
Gel electrophoresis is an application of electrophoresis in molecular biology. Biological macromolecules – usually proteins, DNA, or RNA – are loaded on a gel and separated on the basis of their electrophoretic mobility. (The gel greatly retards the mobility of all molecules present.)
Electrophoretic displays (EPD's) are a class of information display that form images by electrophoretic motion of charged, colored pigment particles. Products incorporating electrophoretic displays include the Sony Librie electronic book reader, and the iRex iLiad enewspaper tablet, both of which use electrophoretic films manufactured by E Ink Corporation.
Electrophoresis is also used in the process of DNA fingerprinting. Certain DNA segments that vary vastly among humans are cut at recognition sites by restriction enzymes (restriction endonuclease). After the resulting DNA fragments are run through electrophoresis, the distance between bands are measured and recorded as the DNA "fingerprint."
Coatings, such as paint or ceramics, can be applied by electrophoretic deposition. The technique can even be used for 3D printing.
Electrophoretic mobility
The electrophoretic mobility, often called Electrical mobility or just 'mobility', describes the motion of charged species in a fluid due to an external electric field. The velocity of the ion is proportional to its charge and to the electric field. The mobility is the proportionality coefficient.
The definition of the electrophoretic mobility (represented by the Greek letter nu) is:
 <math> \nu = \frac{u}{F z E} </math> in [mol s/kg]
where u is the ion velocity due to the electric field E, z is the ion charge and F the Faraday constant.
Another simpler definition commonly used is:
 <math> \nu = \frac{u}{E} </math> in [m^{2}/(V·s)]
where u is the ion velocity due to the electric field E.
Nernst Einstein equation
The value of the mobility can be found from the diffusion coefficient thanks to the Nernst Einstein equation:
 <math> \nu = \frac{D}{R T} </math>
where D is the ion diffusion coefficient, R is the universal gas constant and T is the absolute temperature.
References
Wikimedia Commons has media related to Electrophoresis. 
 ↑ John R. Taylor, Chris D. Zafiratos, and Michael A. Dubson, "Modern Physics for Scientists and Engineers," Prentice Hall, Upper Saddle River, 2004.
 http://gslc.genetics.utah.edu/units/activities/electrophoresis/
 W.B. Russel, D.A. Saville, and W.R. Schowalter, "Colloidal Dispersions," Cambridge University Press, Cambridge UK, 1989.
 Voet and Voet, Biochemistry, John Whiley & sons. 1990.
 Jahn, G. C., Hall, D.W., and Zam, S. G. 1986. A comparison of the life cycles of two Amblyospora (Microspora: Amblyosporidae) in the mosquitoes Culex salinarius and Culex tarsalis Coquillett. J. Florida AntiMosquito Assoc. 57, 24–27.
 Khattak MN, Matthews RC. Genetic relatedness of Bordetella species as determined by macrorestriction digests resolved by pulsedfield gel electrophoresis. Int J Syst Bacteriol. 1993 Oct;43(4):65964.
 Barz, D.P.J., Ehrhard. P., Model and verification of electrokinetic flow and transport in a microelectrophoresis device, Lab Chip, 2005, 5, 949  958.
ISO electrophoresis
External links
See also
cs:Elektroforéza da:Elektroforese de:Elektrophorese eo:Elektroforezo fa:الکتروفورز id:Elektroforesis it:Elettroforesi sr:Електрофореза su:Éléktroforésis fi:Elektroforeesi sv:Elektrofores uk:Електрофорез he:אלקטרופורזה