This gene encodes a member of the CLK family of dual specificity protein kinases. CLK family members have shown to interact with, and phosphorylate, serine/arginine-rich (SR) proteins of the spliceosomal complex, which is a part of the regulatory mechanism that enables the SR proteins to control RNA splicing. This protein kinase is involved in the regulation of several cellular processes and may serve as a link between cell cycle progression, apoptosis, and telomere length regulation.[3]
References
↑Hanes J, von der Kammer H, Klaudiny J, Scheit KH (Dec 1994). "Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases". Journal of Molecular Biology. 244 (5): 665–72. doi:10.1006/jmbi.1994.1763. PMID7990150.
↑Talmadge CB, Finkernagel S, Sumegi J, Sciorra L, Rabinow L (Oct 1998). "Chromosomal mapping of three human LAMMER protein-kinase-encoding genes". Human Genetics. 103 (4): 523–4. doi:10.1007/s004390050861. PMID9856501.
Lee K, Du C, Horn M, Rabinow L (Nov 1996). "Activity and autophosphorylation of LAMMER protein kinases". The Journal of Biological Chemistry. 271 (44): 27299–303. doi:10.1074/jbc.271.44.27299. PMID8910305.
Duncan PI, Stojdl DF, Marius RM, Scheit KH, Bell JC (Jun 1998). "The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing". Experimental Cell Research. 241 (2): 300–8. doi:10.1006/excr.1998.4083. PMID9637771.
Nayler O, Schnorrer F, Stamm S, Ullrich A (Dec 1998). "The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation". The Journal of Biological Chemistry. 273 (51): 34341–8. doi:10.1074/jbc.273.51.34341. PMID9852100.
Moeslein FM, Myers MP, Landreth GE (Sep 1999). "The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B". The Journal of Biological Chemistry. 274 (38): 26697–704. doi:10.1074/jbc.274.38.26697. PMID10480872.
Nothwang HG, Kim HG, Aoki J, Geisterfer M, Kübart S, Wegner RD, van Moers A, Ashworth LK, Haaf T, Bell J, Arai H, Tommerup N, Ropers HH, Wirth J (Apr 2001). "Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain". Human Molecular Genetics. 10 (8): 797–806. doi:10.1093/hmg/10.8.797. PMID11285245.
Ravichandran LV, Chen H, Li Y, Quon MJ (Oct 2001). "Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor". Molecular Endocrinology. 15 (10): 1768–80. doi:10.1210/mend.15.10.0711. PMID11579209.
Jiang N, Bénard CY, Kébir H, Shoubridge EA, Hekimi S (Jun 2003). "Human CLK2 links cell cycle progression, apoptosis, and telomere length regulation". The Journal of Biological Chemistry. 278 (24): 21678–84. doi:10.1074/jbc.M300286200. PMID12670948.
Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (Aug 2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Current Biology. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID15324660.
Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD, Boulton SJ (Apr 2007). "HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability". Nature Cell Biology. 9 (4): 391–401. doi:10.1038/ncb1555. PMID17384638.