Myelofibrosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 10: Line 10:
*Myelofibrosis is the result of pathologic interaction between hematopoietic progenitor and stromal cells leading to the activation and expansion of the stroma and the accumulation of reticulin and collagen fibers produced by mesenchymal cells.<ref name="pmid24583557">{{cite journal |vauthors=Bedekovics J, Méhes G |title=[Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow] |language=Hungarian |journal=Orv Hetil |volume=155 |issue=10 |pages=367–75 |date=March 2014 |pmid=24583557 |doi=10.1556/OH.2014.29823 |url=}}</ref>
*Myelofibrosis is the result of pathologic interaction between hematopoietic progenitor and stromal cells leading to the activation and expansion of the stroma and the accumulation of reticulin and collagen fibers produced by mesenchymal cells.<ref name="pmid24583557">{{cite journal |vauthors=Bedekovics J, Méhes G |title=[Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow] |language=Hungarian |journal=Orv Hetil |volume=155 |issue=10 |pages=367–75 |date=March 2014 |pmid=24583557 |doi=10.1556/OH.2014.29823 |url=}}</ref>
*The development and progression of myelofibrosis involves the activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, which paves the way for the overproduction of abnormal megakaryocytes.<ref name="pmid28028029">{{cite journal |vauthors=Vainchenker W, Kralovics R |title=Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms |journal=Blood |volume=129 |issue=6 |pages=667–679 |date=February 2017 |pmid=28028029 |doi=10.1182/blood-2016-10-695940 |url=}}</ref><ref name="pmid27756071">{{cite journal |vauthors=Alshemmari SH, Rajan R, Emadi A |title=Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review |journal=Med Princ Pract |volume=25 |issue=6 |pages=501–509 |date=2016 |pmid=27756071 |pmc=5588514 |doi=10.1159/000450956 |url=}}</ref><ref name="pmid26408371">{{cite journal |vauthors=de Freitas RM, da Costa Maranduba CM |title=Myeloproliferative neoplasms and the JAK/STAT signaling pathway: an overview |journal=Rev Bras Hematol Hemoter |volume=37 |issue=5 |pages=348–53 |date=2015 |pmid=26408371 |pmc=4685044 |doi=10.1016/j.bjhh.2014.10.001 |url=}}</ref>
*The development and progression of myelofibrosis involves the activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, which paves the way for the overproduction of abnormal megakaryocytes.<ref name="pmid28028029">{{cite journal |vauthors=Vainchenker W, Kralovics R |title=Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms |journal=Blood |volume=129 |issue=6 |pages=667–679 |date=February 2017 |pmid=28028029 |doi=10.1182/blood-2016-10-695940 |url=}}</ref><ref name="pmid27756071">{{cite journal |vauthors=Alshemmari SH, Rajan R, Emadi A |title=Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review |journal=Med Princ Pract |volume=25 |issue=6 |pages=501–509 |date=2016 |pmid=27756071 |pmc=5588514 |doi=10.1159/000450956 |url=}}</ref><ref name="pmid26408371">{{cite journal |vauthors=de Freitas RM, da Costa Maranduba CM |title=Myeloproliferative neoplasms and the JAK/STAT signaling pathway: an overview |journal=Rev Bras Hematol Hemoter |volume=37 |issue=5 |pages=348–53 |date=2015 |pmid=26408371 |pmc=4685044 |doi=10.1016/j.bjhh.2014.10.001 |url=}}</ref>
*The abnormally proliferated megakaryocytes produce cytokines such as platelet-derived growth factor (PDGF), transforming growth factor (TGF) beta, and basic fibroblast growth factor (bFGF) which are involved in the abnormal proliferation of fibroblasts, resulting in fibrosis.<ref name="pmid10550553">{{cite journal |vauthors=Le Bousse-Kerdilès MC, Martyré MC |title=Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis |journal=Ann. Hematol. |volume=78 |issue=10 |pages=437–44 |date=October 1999 |pmid=10550553 |doi= |url=}}</ref><ref name="pmid17910625">{{cite journal |vauthors=Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP |title=Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres |journal=Br. J. Haematol. |volume=139 |issue=3 |pages=351–62 |date=November 2007 |pmid=17910625 |doi=10.1111/j.1365-2141.2007.06807.x |url=}}</ref><ref name="pmid8435338">{{cite journal |vauthors=Reilly JT, Barnett D, Dolan G, Forrest P, Eastham J, Smith A |title=Characterization of an acute micromegakaryocytic leukaemia: evidence for the pathogenesis of myelofibrosis |journal=Br. J. Haematol. |volume=83 |issue=1 |pages=58–62 |date=January 1993 |pmid=8435338 |doi= |url=}}</ref><ref name="pmid12153156">{{cite journal |vauthors=Schmitt A, Drouin A, Massé JM, Guichard J, Shagraoui H, Cramer EM |title=Polymorphonuclear neutrophil and megakaryocyte mutual involvement in myelofibrosis pathogenesis |journal=Leuk. Lymphoma |volume=43 |issue=4 |pages=719–24 |date=April 2002 |pmid=12153156 |doi=10.1080/10428190290016809 |url=}}</ref>
*The abnormally proliferated megakaryocytes produce cytokines such as platelet-derived growth factor (PDGF), transforming growth factor (TGF) beta, and basic fibroblast growth factor (bFGF) which are involved in the abnormal proliferation of fibroblasts, resulting in fibrosis.<ref name="pmid10550553">{{cite journal |vauthors=Le Bousse-Kerdilès MC, Martyré MC |title=Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis |journal=Ann. Hematol. |volume=78 |issue=10 |pages=437–44 |date=October 1999 |pmid=10550553 |doi= |url=}}</ref><ref name="pmid17910625">{{cite journal |vauthors=Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP |title=Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres |journal=Br. J. Haematol. |volume=139 |issue=3 |pages=351–62 |date=November 2007 |pmid=17910625 |doi=10.1111/j.1365-2141.2007.06807.x |url=}}</ref><ref name="pmid8435338">{{cite journal |vauthors=Reilly JT, Barnett D, Dolan G, Forrest P, Eastham J, Smith A |title=Characterization of an acute micromegakaryocytic leukaemia: evidence for the pathogenesis of myelofibrosis |journal=Br. J. Haematol. |volume=83 |issue=1 |pages=58–62 |date=January 1993 |pmid=8435338 |doi= |url=}}</ref><ref name="pmid12153156">{{cite journal |vauthors=Schmitt A, Drouin A, Massé JM, Guichard J, Shagraoui H, Cramer EM |title=Polymorphonuclear neutrophil and megakaryocyte mutual involvement in myelofibrosis pathogenesis |journal=Leuk. Lymphoma |volume=43 |issue=4 |pages=719–24 |date=April 2002 |pmid=12153156 |doi=10.1080/10428190290016809 |url=}}</ref><ref name="pmid10942376">{{cite journal |vauthors=Schmitt A, Jouault H, Guichard J, Wendling F, Drouin A, Cramer EM |title=Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis |journal=Blood |volume=96 |issue=4 |pages=1342–7 |date=August 2000 |pmid=10942376 |doi= |url=}}</ref>
*Myelofibrosis can result in the setting of somatic mutations in specific genes or it can also be secondary to other primary disorders.
*Myelofibrosis can result in the setting of somatic mutations in specific genes or it can also be secondary to other primary disorders.
*The somatic mutations driving the disorder can mainly involve the myeloproliferative leukemia virus (MPL) oncogene, the calreticulin (CALR) gene, or Janus kinase 2 (JAK2) gene.<ref name="pmid27756071">{{cite journal |vauthors=Alshemmari SH, Rajan R, Emadi A |title=Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review |journal=Med Princ Pract |volume=25 |issue=6 |pages=501–509 |date=2016 |pmid=27756071 |pmc=5588514 |doi=10.1159/000450956 |url=}}</ref><ref name="pmid24325356">{{cite journal |vauthors=Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R |title=Somatic mutations of calreticulin in myeloproliferative neoplasms |journal=N. Engl. J. Med. |volume=369 |issue=25 |pages=2379–90 |date=December 2013 |pmid=24325356 |doi=10.1056/NEJMoa1311347 |url=}}</ref>
*The somatic mutations driving the disorder can mainly involve the myeloproliferative leukemia virus (MPL) oncogene, the calreticulin (CALR) gene, or Janus kinase 2 (JAK2) gene.<ref name="pmid27756071">{{cite journal |vauthors=Alshemmari SH, Rajan R, Emadi A |title=Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review |journal=Med Princ Pract |volume=25 |issue=6 |pages=501–509 |date=2016 |pmid=27756071 |pmc=5588514 |doi=10.1159/000450956 |url=}}</ref><ref name="pmid24325356">{{cite journal |vauthors=Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R |title=Somatic mutations of calreticulin in myeloproliferative neoplasms |journal=N. Engl. J. Med. |volume=369 |issue=25 |pages=2379–90 |date=December 2013 |pmid=24325356 |doi=10.1056/NEJMoa1311347 |url=}}</ref>

Revision as of 16:38, 13 November 2018

Myelofibrosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Myelofibrosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myelofibrosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myelofibrosis pathophysiology

All Images
X-rays
Echo and Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myelofibrosis pathophysiology

CDC on Myelofibrosis pathophysiology

Myelofibrosis pathophysiology in the news

Blogs on Myelofibrosis pathophysiology

Directions to Hospitals Treating Myelofibrosis

Risk calculators and risk factors for Myelofibrosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Mohamad Alkateb, MBBCh [2], Sujit Routray, M.D. [3]

Overview

Myelofibrosis, a myeloproliferative disorder, is characterized by the proliferation of megakaryocytes in the bone marrow, disrupted cytokine production, and reactive fibrosis resulting in bone marrow failure. The fibrosed and scarred bone marrow produces fewer and fewer normal functioning blood cells leading to pancytopenia and extramedullary hematopoiesis. It can mainly be associated with somatic mutation of the myeloproliferative leukemia virus (MPL) oncogene, the calreticulin (CALR) gene, or Janus kinase 2 (JAK2) gene but other genes can also be involved and it can also result in the setting of another primary insult.

Pathogenesis

  • Polyclonal mesenchymal cells of the bone marrow such as, fibroblasts, osteoblasts, pericytes, endothelial cells, adipocytes, and reticular cells create a functional microenvironment, which maintains hematopoiesis. This maintenance takes place through cellular interactions via growth factors, adhesion molecules, cytokines, and extracellular matrix components along with the help of oxygen and calcium.[1]
  • Myelofibrosis is the result of pathologic interaction between hematopoietic progenitor and stromal cells leading to the activation and expansion of the stroma and the accumulation of reticulin and collagen fibers produced by mesenchymal cells.[1]
  • The development and progression of myelofibrosis involves the activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, which paves the way for the overproduction of abnormal megakaryocytes.[2][3][4]
  • The abnormally proliferated megakaryocytes produce cytokines such as platelet-derived growth factor (PDGF), transforming growth factor (TGF) beta, and basic fibroblast growth factor (bFGF) which are involved in the abnormal proliferation of fibroblasts, resulting in fibrosis.[5][6][7][8][9]
  • Myelofibrosis can result in the setting of somatic mutations in specific genes or it can also be secondary to other primary disorders.
  • The somatic mutations driving the disorder can mainly involve the myeloproliferative leukemia virus (MPL) oncogene, the calreticulin (CALR) gene, or Janus kinase 2 (JAK2) gene.[3][10]
  • The fibrosis of bone marrow leads to extramedullary hematopoiesis involving the reticuloendothelial organs such as the liver and spleen. Rarely, the extramedullary hematopoiesis can also involve ectopic hematopoietic tissue which includes the skin, lymph nodes, lungs, gastrointestinal tract, peritoneum, central nervous system, and genital and urinary tracts.[11][12][13][13][14]

Sites of Extramedullary Hematopoiesis

  • The main sites of extramedullary hematopoiesis include the reticuloendothelial organs, the spleen and liver.[14][15][16][17][18]
  • Hematopoiesis can rarely also occur in the following locations:

Genetics

Most commonly involved

  • Janus-kinase 2 (JAK2)
  • Calreticulin (CALR)
  • Myeloproliferative leukemia virus (MPL) oncogene
  • These mutations are found in approximately 90% of the patients.

Less commonly involved

  • Additional sex combs-like 1 (ASXL1)
  • Slicing factor, serine/arginine-rich 2 (SRSF2)
  • Enhancer of zeste, drosophila, homolog 2 (EZH2)

Associated Conditions

  • Myelofibrosis belongs to a group of disorders collectively called myeloproliferative disorders. Other members of this group include chronic myelogenous leukemia (CML), polycythemia vera (PV), and essential thrombocythemia (ET).
  • Myelofibrosis can be associated with a variety of medical conditions such as:
  • Malignancies and hematologic disorders (Hodgkin lymphoma, non-Hodgkin lymphoma, essential thrombocythemia, polycythemia vera, multiple myeloma, and malignancies with metastases to the bone)[30][31][32][33][34][35][36][37][38][39][40]
  • Infections (tuberculosis [TB], HIV infection, and dengue fever)[41][42][43][44]
  • Autoimmune diseases (systemic lupus erythematosus [SLE], multiple sclerosis [MS], Sjogren's syndrome, and juvenile idiopathic arthritis)[45][46][47][48][49]
  • Endocrine disorders (primary hyperparathyroidism)[50]
  • Delta-storage pool deficiency (SPD)[51]

Gross Pathology

  • On gross pathology, pancytopenia and extramedullary hematopoiesis are the characteristic findings. These are manifested as anemia, susceptibility to various infections, lymphadenopathy, hapatomegaly, and splenomegaly.[52][53][54][55][27][56][57][58][59]

Microscopic Pathology

On Light Microscopy

  • Fish-shaped RBCs on peripheral blood smears[60]
  • Micromegakaryocytes on the peripheral blood smears[7]
  • Fibroblast-like and myofibroblast-like reticulum cells on bone marrow study[61]
  • Teardrop cells[62]

On Confocal Microscopy

  • Proplatelet (pseudopodia of megakaryocyte which extend into bone marrow sinuses to release platelets) formation[63]

References

  1. 1.0 1.1 Bedekovics J, Méhes G (March 2014). "[Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow]". Orv Hetil (in Hungarian). 155 (10): 367–75. doi:10.1556/OH.2014.29823. PMID 24583557.
  2. Vainchenker W, Kralovics R (February 2017). "Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms". Blood. 129 (6): 667–679. doi:10.1182/blood-2016-10-695940. PMID 28028029.
  3. 3.0 3.1 3.2 Alshemmari SH, Rajan R, Emadi A (2016). "Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review". Med Princ Pract. 25 (6): 501–509. doi:10.1159/000450956. PMC 5588514. PMID 27756071.
  4. de Freitas RM, da Costa Maranduba CM (2015). "Myeloproliferative neoplasms and the JAK/STAT signaling pathway: an overview". Rev Bras Hematol Hemoter. 37 (5): 348–53. doi:10.1016/j.bjhh.2014.10.001. PMC 4685044. PMID 26408371.
  5. Le Bousse-Kerdilès MC, Martyré MC (October 1999). "Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis". Ann. Hematol. 78 (10): 437–44. PMID 10550553.
  6. Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP (November 2007). "Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres". Br. J. Haematol. 139 (3): 351–62. doi:10.1111/j.1365-2141.2007.06807.x. PMID 17910625.
  7. 7.0 7.1 Reilly JT, Barnett D, Dolan G, Forrest P, Eastham J, Smith A (January 1993). "Characterization of an acute micromegakaryocytic leukaemia: evidence for the pathogenesis of myelofibrosis". Br. J. Haematol. 83 (1): 58–62. PMID 8435338.
  8. Schmitt A, Drouin A, Massé JM, Guichard J, Shagraoui H, Cramer EM (April 2002). "Polymorphonuclear neutrophil and megakaryocyte mutual involvement in myelofibrosis pathogenesis". Leuk. Lymphoma. 43 (4): 719–24. doi:10.1080/10428190290016809. PMID 12153156.
  9. Schmitt A, Jouault H, Guichard J, Wendling F, Drouin A, Cramer EM (August 2000). "Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis". Blood. 96 (4): 1342–7. PMID 10942376.
  10. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R (December 2013). "Somatic mutations of calreticulin in myeloproliferative neoplasms". N. Engl. J. Med. 369 (25): 2379–90. doi:10.1056/NEJMoa1311347. PMID 24325356.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 Mak YK, Chan CH, So CC, Chan MK, Chu YC (February 2002). "Idiopathic myelofibrosis with extramedullary haemopoiesis involving the urinary bladder in a Chinese lady". Clin Lab Haematol. 24 (1): 55–9. PMID 11843900.
  12. 12.0 12.1 Philipponnet C, Ronco P, Aniort J, Kemeny JL, Heng AE (December 2017). "Membranous Nephropathy and Intrarenal Extramedullary Hematopoiesis in a Patient With Myelofibrosis". Am. J. Kidney Dis. 70 (6): 874–877. doi:10.1053/j.ajkd.2017.06.022. PMID 28821362.
  13. 13.0 13.1 13.2 Yang M, Roarke M (March 2017). "Diffuse pulmonary extramedullary hematopoiesis in myelofibrosis diagnosed with technetium-99m sulfur colloid bone marrow scintigraphy and single photon emission computerized tomography/CT". Am. J. Hematol. 92 (3): 323–324. doi:10.1002/ajh.24616. PMID 27883206.
  14. 14.0 14.1 Pizzi M, Gergis U, Chaviano F, Orazi A (September 2016). "The effects of hematopoietic stem cell transplant on splenic extramedullary hematopoiesis in patients with myeloproliferative neoplasm-associated myelofibrosis". Hematol Oncol Stem Cell Ther. 9 (3): 96–104. doi:10.1016/j.hemonc.2016.07.002. PMID 27521149.
  15. Mohyuddin GR, Yacoub A (2016). "Primary Myelofibrosis Presenting as Extramedullary Hematopoiesis in a Transplanted Liver Graft: Case Report and Review of the Literature". Case Rep Hematol. 2016: 9515404. doi:10.1155/2016/9515404. PMC 4739215. PMID 26885416.
  16. Henry M, Chitlur M, Rajpurkar M, Mastropietro CW, Poulik J, Ravindranath Y (May 2014). "Myelofibrosis, hepatic extramedullary hematopoiesis and ascites associated with vitamin D deficiency in early infancy". J. Pediatr. Hematol. Oncol. 36 (4): 319–21. doi:10.1097/MPH.0b013e31828e548a. PMID 23619118.
  17. 17.0 17.1 Imai K, Aoi T, Kitai H, Endo N, Fujino M, Ichida S (November 2017). "A case of perirenal extramedullary hematopoiesis in a patient with primary myelofibrosis". CEN Case Rep. 6 (2): 194–199. doi:10.1007/s13730-017-0274-1. PMC 5694411. PMID 28895103.
  18. 18.0 18.1 18.2 Kwak HS, Lee JM (August 2000). "CT findings of extramedullary hematopoiesis in the thorax, liver and kidneys, in a patient with idiopathic myelofibrosis". J. Korean Med. Sci. 15 (4): 460–2. doi:10.3346/jkms.2000.15.4.460. PMC 3054659. PMID 10983698.
  19. Mizoguchi M, Kawa Y, Minami T, Nakayama H, Mizoguchi H (February 1990). "Cutaneous extramedullary hematopoiesis in myelofibrosis". J. Am. Acad. Dermatol. 22 (2 Pt 2): 351–5. PMID 2406300.
  20. Tefferi, A; Lasho, T L; Finke, C M; Knudson, R A; Ketterling, R; Hanson, C H; Maffioli, M; Caramazza, D; Passamonti, F; Pardanani, A (2014). "CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons". Leukemia. 28 (7): 1472–1477. doi:10.1038/leu.2014.3. ISSN 0887-6924.
  21. Baxter EJ, Scott LM, Campbell PJ; et al. (2005). "Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders". Lancet. 365 (9464): 1054–61. doi:10.1016/S0140-6736(05)71142-9. PMID 15781101.
  22. Pikman Y, Lee BH, Mercher T; et al. (2006). "MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia". PLoS Med. 3 (7): e270. doi:10.1371/journal.pmed.0030270. PMC 1502153. PMID 16834459. Unknown parameter |month= ignored (help)
  23. Shammo JM, Stein BL (December 2016). "Mutations in MPNs: prognostic implications, window to biology, and impact on treatment decisions". Hematology Am Soc Hematol Educ Program. 2016 (1): 552–560. doi:10.1182/asheducation-2016.1.552. PMC 6142495. PMID 27913528.
  24. Li B, Xu J, Wang J, Gale RP, Xu Z, Cui Y, Yang L, Xing R, Ai X, Qin T, Zhang Y, Zhang P, Xiao Z (November 2014). "Calreticulin mutations in Chinese with primary myelofibrosis". Haematologica. 99 (11): 1697–700. doi:10.3324/haematol.2014.109249. PMC 4222480. PMID 24997152.
  25. Rotunno G, Pacilli A, Artusi V, Rumi E, Maffioli M, Delaini F, Brogi G, Fanelli T, Pancrazzi A, Pietra D, Bernardis I, Belotti C, Pieri L, Sant'Antonio E, Salmoiraghi S, Cilloni D, Rambaldi A, Passamonti F, Barbui T, Manfredini R, Cazzola M, Tagliafico E, Vannucchi AM, Guglielmelli P (July 2016). "Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group". Am. J. Hematol. 91 (7): 681–6. doi:10.1002/ajh.24377. PMID 27037840.
  26. Song J, Hussaini M, Zhang H, Shao H, Qin D, Zhang X, Ma Z, Hussnain Naqvi SM, Zhang L, Moscinski LC (May 2017). "Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis". Am. J. Clin. Pathol. 147 (5): 444–452. doi:10.1093/ajcp/aqw222. PMC 5402718. PMID 28419183.
  27. 27.0 27.1 Tefferi A (December 2016). "Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management". Am. J. Hematol. 91 (12): 1262–1271. doi:10.1002/ajh.24592. PMID 27870387.
  28. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, Ketterling RP, Rotunno G, Knudson RA, Susini MC, Laborde RR, Spolverini A, Pancrazzi A, Pieri L, Manfredini R, Tagliafico E, Zini R, Jones A, Zoi K, Reiter A, Duncombe A, Pietra D, Rumi E, Cervantes F, Barosi G, Cazzola M, Cross NC, Tefferi A (September 2013). "Mutations and prognosis in primary myelofibrosis". Leukemia. 27 (9): 1861–9. doi:10.1038/leu.2013.119. PMID 23619563.
  29. Tefferi A, Pardanani A (April 2015). "Myeloproliferative Neoplasms: A Contemporary Review". JAMA Oncol. 1 (1): 97–105. doi:10.1001/jamaoncol.2015.89. PMID 26182311.
  30. Boiocchi L, Mathew S, Gianelli U, Iurlo A, Radice T, Barouk-Fox S, Knowles DM, Orazi A (December 2013). "Morphologic and cytogenetic differences between post-polycythemic myelofibrosis and primary myelofibrosis in fibrotic stage". Mod. Pathol. 26 (12): 1577–85. doi:10.1038/modpathol.2013.109. PMID 23787440.
  31. Sakatoku K, Takeoka Y, Araki T, Miura A, Fujitani Y, Yamamura R, Miyagi Y, Senzaki H, Ohta K (2017). "Lymphocyte-depleted classical Hodgkin lymphoma accompanied by myelofibrosis". Rinsho Ketsueki (in Japanese). 58 (7): 772–775. doi:10.11406/rinketsu.58.772. PMID 28781273.
  32. Fu R, Yu H, Wu YH, Liu H, Shao ZH (September 2015). "Hodgkin's lymphoma associated with myelofibrosis: A case report". Oncol Lett. 10 (3): 1551–1554. doi:10.3892/ol.2015.3438. PMC 4533276. PMID 26622707.
  33. Liu YL, Wang WJ, Wang XN (June 2015). "[Pathological Characteristics of Bone Marrow in Non-Hodgkin's Lymphoma Patients with Secondary Myelofibrosis and Their Relationship with Prognosis]". Zhongguo Shi Yan Xue Ye Xue Za Zhi (in Chinese). 23 (3): 674–8. doi:10.7534/j.issn.1009-2137.2015.03.014. PMID 26117015.
  34. Dolgikh TY, Domnikova NP, Tornuev YV, Vinogradova EV, Krinitsyna YM (February 2017). "Incidence of Myelofibrosis in Chronic Myeloid Leukemia, Multiple Myeloma, and Chronic Lymphoid Leukemia during Various Phases of Diseases". Bull. Exp. Biol. Med. 162 (4): 483–487. doi:10.1007/s10517-017-3645-x. PMID 28239786.
  35. Zhao J, Ma L, Guan JH (August 2017). "[Pathological Characteristics of Bone Marrow in Multiple Myeloma Patients with Secondary Myelofibrosis and Their Relationship with Prognosis]". Zhongguo Shi Yan Xue Ye Xue Za Zhi (in Chinese). 25 (4): 1080–1085. doi:10.7534/j.issn.1009-2137.2017.04.021. PMID 28823272.
  36. Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, Rambaldi A, Caramella M, Komrokji R, Gotlib J, Kiladjian JJ, Cervantes F, Devos T, Palandri F, De Stefano V, Ruggeri M, Silver RT, Benevolo G, Albano F, Caramazza D, Merli M, Pietra D, Casalone R, Rotunno G, Barbui T, Cazzola M, Vannucchi AM (December 2017). "A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis". Leukemia. 31 (12): 2726–2731. doi:10.1038/leu.2017.169. PMID 28561069.
  37. Masarova L, Bose P, Daver N, Pemmaraju N, Newberry KJ, Manshouri T, Cortes J, Kantarjian HM, Verstovsek S (August 2017). "Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis". Leuk. Res. 59: 110–116. doi:10.1016/j.leukres.2017.06.001. PMC 5573611. PMID 28601551.
  38. MARKAND ON (May 1965). "SECONDARY MARBLE BONE DISEASE: GENERALISED OSTEOSCLEROSIS AND MYELOFIBROSIS IN CARCINOMA OF PROSTATE WITH A CASE REPORT". J Assoc Physicians India. 13: 349–55. PMID 14302719.
  39. Chang JC, Naqvi T (2003). "Thrombotic thrombocytopenic purpura associated with bone marrow metastasis and secondary myelofibrosis in cancer". Oncologist. 8 (4): 375–80. PMID 12897334.
  40. Hiwada K, Sera Y, Nishimura M (July 1970). "[Autopsy case of secondary myelofibrosis due to bone marrow metastasis of stomach cancer]". Iryo (in Japanese). 24 (7): 585–90. PMID 5458299.
  41. Qing X, Sun N, Yeh J, Yue C, Cai J (October 2014). "Dengue fever and bone marrow myelofibrosis". Exp. Mol. Pathol. 97 (2): 208–10. doi:10.1016/j.yexmp.2014.07.004. PMID 25016180.
  42. Lee AC, Fong CM (May 2012). "Autoimmune myelofibrosis as the first manifestation of human immunodeficiency virus infection in an infant". Ann. Hematol. 91 (5): 809–810. doi:10.1007/s00277-011-1329-6. PMID 21894472.
  43. Hashim MS, Kordofani AY, el Dabi MA (March 1997). "Tuberculosis and myelofibrosis in children: a report". Ann Trop Paediatr. 17 (1): 61–5. PMID 9176580.
  44. Viallard JF, Parrens M, Boiron JM, Texier J, Mercie P, Pellegrin JL (June 2002). "Reversible myelofibrosis induced by tuberculosis". Clin. Infect. Dis. 34 (12): 1641–3. doi:10.1086/340524. PMID 12032901.
  45. Jain N, Sinha R, Sengupta J, Chakrabartty J (June 2016). "A rare case of myelofibrosis secondary to juvenile idiopathic arthritis". Br. J. Haematol. 173 (6): 819. doi:10.1111/bjh.14106. PMID 27102067.
  46. Cansu DÜ, Teke HÜ, Korkmaz C (March 2017). "A rare cause of cytopenia in a patient with systemic lupus erythematosus: Autoimmune myelofibrosis". Eur J Rheumatol. 4 (1): 76–78. doi:10.5152/eurjrheum.2016.011. PMC 5335895. PMID 28293461.
  47. Thorsteinsdottir S, Bjerrum OW, Hasselbalch HC (2013). "Myeloproliferative neoplasms in five multiple sclerosis patients". Leuk Res Rep. 2 (2): 61–3. doi:10.1016/j.lrr.2013.06.004. PMC 3850374. PMID 24371783.
  48. Abaza Y, Yin CC, Bueso-Ramos CE, Wang SA, Verstovsek S (April 2017). "Primary autoimmune myelofibrosis: a case report and review of the literature". Int. J. Hematol. 105 (4): 536–539. doi:10.1007/s12185-016-2129-5. PMID 27830539.
  49. el Mouzan MI, Ahmad MA, al Fadel Saleh M, al Sohaibani MO, al Gindan YM (1988). "Myelofibrosis and pancytopenia in systemic lupus erythematosus". Acta Haematol. 80 (4): 219–21. doi:10.1159/000205641. PMID 3146200.
  50. Lim DJ, Oh EJ, Park CW, Kwon HS, Hong EJ, Yoon KH, Kang MI, Cha BY, Lee KW, Son HY, Kang SK (December 2007). "Pancytopenia and secondary myelofibrosis could be induced by primary hyperparathyroidism". Int J Lab Hematol. 29 (6): 464–8. doi:10.1111/j.1365-2257.2006.00877.x. PMID 17988303.
  51. Mouly S, Youssefian T, Souni F, Cramer E, Lefrere F, Varet B, Hermine O (May 2000). "Acquired delta-storage pool deficiency associated with idiopathic myelofibrosis". Leuk. Lymphoma. 37 (5–6): 623–7. doi:10.3109/10428190009058516. PMID 11042524.
  52. Cervantes F, Correa JG, Hernandez-Boluda JC (May 2016). "Alleviating anemia and thrombocytopenia in myelofibrosis patients". Expert Rev Hematol. 9 (5): 489–96. doi:10.1586/17474086.2016.1154452. PMID 26891375.
  53. Hernández-Boluda JC, Martínez-Trillos A, García-Gutiérrez V, Ferrer-Marín F, Xicoy B, Alvarez-Larrán A, Kerguelen A, Barba P, Gómez M, Herrera JC, Correa JG, Cervantes F (2016). "Long-term results of prednisone treatment for the anemia of myelofibrosis". Leuk. Lymphoma. 57 (1): 120–4. doi:10.3109/10428194.2015.1046866. PMID 25944376.
  54. Ungprasert P, Chowdhary VR, Davis MD, Makol A (April 2016). "Autoimmune myelofibrosis with pancytopenia as a presenting manifestation of systemic lupus erythematosus responsive to mycophenolate mofetil". Lupus. 25 (4): 427–30. doi:10.1177/0961203315615221. PMID 26537421.
  55. Tang VK, Huh YO, Tayar JH, Rojas Hernandez CM (2016). "Primary autoimmune myelofibrosis as etiology of pancytopenia mimicking myelodysplastic syndrome". Leuk. Lymphoma. 57 (3): 731–4. doi:10.3109/10428194.2015.1076931. PMID 26422082.
  56. Panda A, Chandrashekhara SH, Nambirajan A, Mishra P (December 2016). "Idiopathic myelofibrosis with disseminated hepatosplenic, mesenteric, renal and pulmonary extramedullary haematopoeisis, portal hypertension and tuberculosis: initial presentation and 2 years follow-up". BMJ Case Rep. 2016. doi:10.1136/bcr-2016-217854. PMID 28011890.
  57. Gruner BA, DeNapoli TS, Elshihabi S, Britton HA, Langevin AM, Thomas PJ, Weitman SD (October 2003). "Anemia and hepatosplenomegaly as presenting features in a child with rickets and secondary myelofibrosis". J. Pediatr. Hematol. Oncol. 25 (10): 813–5. PMID 14528107.
  58. Guermazi A, de Kerviler E, Cazals-Hatem D, Zagdanski AM, Frija J (1999). "Imaging findings in patients with myelofibrosis". Eur Radiol. 9 (7): 1366–75. doi:10.1007/s003300050850. PMID 10460376.
  59. Merry GM, Aronowitz PB (March 2010). "Myelofibrosis with massive hepatosplenomegaly and osteolytic bone lesions". J Hosp Med. 5 (3): E27–8. doi:10.1002/jhm.459. PMID 20235305.
  60. Robier C, Körber C, Quehenberger F, Neubauer M, Wölfler A (January 2018). "The frequency of occurrence of fish-shaped red blood cells in different haematologic disorders". Clin. Chem. Lab. Med. 56 (2): 323–326. doi:10.1515/cclm-2017-0378. PMID 28731851.
  61. Biagini G, Severi B, Govoni E, Preda P, Pileri S, Martinelli G, Visani G, Finelli C, Castaldini C (1985). "Stromal cells in primary myelofibrosis: ultrastructural observations". Virchows Arch., B, Cell Pathol. 48 (1): 1–8. PMID 2580387.
  62. Egelé A, van Gelder W, Riedl J (December 2015). "Automated detection and classification of teardrop cells by a novel RBC module using digital imaging/microscopy". Int J Lab Hematol. 37 (6): e153–6. doi:10.1111/ijlh.12399. PMID 26118701.
  63. Muth M, Büsche G, Bock O, Hussein K, Kreipe H (November 2010). "Aberrant proplatelet formation in chronic myeloproliferative neoplasms". Leuk. Res. 34 (11): 1424–9. doi:10.1016/j.leukres.2010.03.040. PMID 20430444.


Template:WikiDoc Sources