Eisenmenger’s syndrome pathophysiology

Jump to navigation Jump to search

Eisenmenger’s syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Eisenmenger’s syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Eisenmenger’s syndrome ACC/AHA Guidelines for Evaluation of Patients

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

ACC/AHA Guidelines for Reproduction

Eisenmenger’s syndrome pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Eisenmenger’s syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Eisenmenger’s syndrome pathophysiology

CDC on Eisenmenger’s syndrome pathophysiology

Eisenmenger’s syndrome pathophysiology in the news

Blogs on Eisenmenger’s syndrome pathophysiology

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Eisenmenger’s syndrome pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Pathophysiology

The left side of the heart supplies to the whole body, and as a result has higher pressures than the right side, which supplies only deoxygenated blood to the lungs. If a large anatomic defect exists between the sides of the heart, blood will flow from the left side to the right side. This results in high blood flow and pressure travelling through the lungs. The increased pressure causes damage to delicate capillaries, which then are replaced with scar tissue. Scar tissue does not contribute to oxygen transfer, therefore decreasing the useful volume of the pulmonary vasculature. The scar tissue also provides less flexibility than normal lung tissue, causing further increases in blood pressure, and the heart must pump harder to continue supplying the lungs, leading to damage of more capillaries.

The reduction in oxygen transfer reduces oxygen saturation in the blood, leading to increased production of red blood cells in an attempt to bring the oxygen saturation up. The excess of red blood cells is called polycythemia. Desperate for enough circulating oxygen, the body begins to dump immature red cells into the blood stream. Immature red cells are not as efficient at carrying oxygen as mature red cells, and they are less flexible, less able to easily squeeze through tiny capillaries in the lungs, and so contribute to death of pulmonary capillary beds. The increase in red blood cells also causes hyperviscosity syndrome.

A person with Eisenmenger's Syndrome is paradoxically subject to the possibility of both uncontrolled bleeding due to damaged capillaries and high pressure, and random clots due to hyperviscosity and stasis of blood. The rough places in the heart lining at the site of the septal defects/shunts tend to gather platelets and keep them out of circulation, and may be the source of random clots.

Eventually, due to increased resistance, pulmonary pressures may increase sufficiently to cause a reversal of blood flow, so blood begins to travel from the right side of the heart to the left side, and the body is supplied with deoxygenated blood, leading to cyanosis and resultant organ damage.

References


Template:WH Template:WS