Diamond-Blackfan anemia causes: Difference between revisions

Jump to navigation Jump to search
Line 7: Line 7:
==Causes==
==Causes==


*in about 80-85% of cases Diamond-Blackfan anemia, a block in [[erythropoiesis]] occurs due to the ribosomal protein gene mutation.Ribosomal protein mutations are [[sprodaic]](55%) or [[hereditary]]. Sporadic mutation occurs in genes encoding several different [[ribosomal]] proteins. About 25% of patients have mutations in the [[ribosomal|ribosome]] protein S19 (RPS19) gene on chromosome 19 at [[cytogenetic]] position 19q13.2. RPS19 has an important role in 18S [[rRNA]] maturation in yeast and in human cells. Approximately 40-45 % DBA cases are inherited with an [[autosomal dominant]] inheritance.<ref name="pmid30503522">{{cite journal |vauthors=Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, Handsaker RE, Abdulhay NJ, Fiorini C, Genovese G, Lim ET, Cheng A, Cummings BB, Chao KR, Beggs AH, Genetti CA, Sieff CA, Newburger PE, Niewiadomska E, Matysiak M, Vlachos A, Lipton JM, Atsidaftos E, Glader B, Narla A, Gleizes PE, O'Donohue MF, Montel-Lehry N, Amor DJ, McCarroll SA, O'Donnell-Luria AH, Gupta N, Gabriel SB, MacArthur DG, Lander ES, Lek M, Da Costa L, Nathan DG, Korostelev AA, Do R, Sankaran VG, Gazda HT |title=The Genetic Landscape of Diamond-Blackfan Anemia |journal=Am. J. Hum. Genet. |volume=103 |issue=6 |pages=930–947 |date=December 2018 |pmid=30503522 |pmc=6288280 |doi=10.1016/j.ajhg.2018.10.027 |url=}}</ref><ref name="pmid23463023">{{cite journal |vauthors=Vlachos A, Dahl N, Dianzani I, Lipton JM |title=Clinical utility gene card for: Diamond-Blackfan anemia--update 2013 |journal=Eur. J. Hum. Genet. |volume=21 |issue=10 |pages= |date=October 2013 |pmid=23463023 |pmc=3778360 |doi=10.1038/ejhg.2013.34 |url=}}</ref><ref name="pmid22160079">{{cite journal |vauthors=Ball S |title=Diamond Blackfan anemia |journal=Hematology Am Soc Hematol Educ Program |volume=2011 |issue= |pages=487–91 |date=2011 |pmid=22160079 |doi=10.1182/asheducation-2011.1.487 |url=}}</ref><ref name="pmid23744582">{{cite journal |vauthors=Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, Sullivan LM, Podsakoff GM, Gadue P, French DL, Mason PJ, Bessler M, Weiss MJ |title=Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients |journal=Blood |volume=122 |issue=6 |pages=912–21 |date=August 2013 |pmid=23744582 |pmc=3739037 |doi=10.1182/blood-2013-01-478321 |url=}}</ref> and they have a family history of the disease with varying phenotypes.<ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref>, although some of cases (GATA1-related DBA and TSR2-related DBA) are inherited in an [[X-linked]] manner.<ref name="pmid20301769">{{cite journal |vauthors=Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, Clinton C, Gazda HT |title= |journal= |volume= |issue= |pages= |date= |pmid=20301769 |doi= |url=}}</ref>.Also, [[autosomal recessive]] inheritance, with a lesser frequency has been reported.<ref name="pmid30881276">{{cite journal |vauthors=Engidaye G, Melku M, Enawgaw B |title=Diamond Blackfan Anemia: Genetics, Pathogenesis, Diagnosis and Treatment |journal=EJIFCC |volume=30 |issue=1 |pages=67–81 |date=March 2019 |pmid=30881276 |pmc=6416817 |doi= |url=}}</ref>Variable [[expressivity]] is seen in all RP gene mutations. Possible mechanisms underlying variable expressivity include an influence of modifier genes and environmental factors. <ref name="pmid20960466">{{cite journal |vauthors=Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L, Proust A, Leblanc T, Simansour M, Dahl N, Fröjmark AS, Pospisilova D, Cmejla R, Beggs AH, Sheen MR, Landowski M, Buros CM, Clinton CM, Dobson LJ, Vlachos A, Atsidaftos E, Lipton JM, Ellis SR, Ramenghi U, Dianzani I |title=The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update |journal=Hum. Mutat. |volume=31 |issue=12 |pages=1269–79 |date=December 2010 |pmid=20960466 |pmc=4485435 |doi=10.1002/humu.21383 |url=}}</ref>
*in about 80-85% of cases Diamond-Blackfan anemia, a block in [[erythropoiesis]] occurs due to the ribosomal protein gene mutation.Ribosomal protein mutations are [[sprodaic]](55%) or [[hereditary]]. Sporadic mutation occurs in genes encoding several different [[ribosomal]] proteins. About 25% of patients have mutations in the [[ribosomal|ribosome]] protein S19 (RPS19) gene on chromosome 19 at [[cytogenetic]] position 19q13.2. RPS19 has an important role in 18S [[rRNA]] maturation in yeast and in human cells. Other mutated genes have been found in RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS24, and RPS26, and rarely in RPL15, RPL17, RPL19, RPL26, RPL27, RPL31, RPS15A, RPS20, RPS27, RPS28, RPS29, that result in small or large [[ribosomal]] [[subunit]] synthesis deficiencies in human cells. Approximately 40-45 % DBA cases are inherited with an [[autosomal dominant]] inheritance.<ref name="pmid30503522">{{cite journal |vauthors=Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, Handsaker RE, Abdulhay NJ, Fiorini C, Genovese G, Lim ET, Cheng A, Cummings BB, Chao KR, Beggs AH, Genetti CA, Sieff CA, Newburger PE, Niewiadomska E, Matysiak M, Vlachos A, Lipton JM, Atsidaftos E, Glader B, Narla A, Gleizes PE, O'Donohue MF, Montel-Lehry N, Amor DJ, McCarroll SA, O'Donnell-Luria AH, Gupta N, Gabriel SB, MacArthur DG, Lander ES, Lek M, Da Costa L, Nathan DG, Korostelev AA, Do R, Sankaran VG, Gazda HT |title=The Genetic Landscape of Diamond-Blackfan Anemia |journal=Am. J. Hum. Genet. |volume=103 |issue=6 |pages=930–947 |date=December 2018 |pmid=30503522 |pmc=6288280 |doi=10.1016/j.ajhg.2018.10.027 |url=}}</ref><ref name="pmid23463023">{{cite journal |vauthors=Vlachos A, Dahl N, Dianzani I, Lipton JM |title=Clinical utility gene card for: Diamond-Blackfan anemia--update 2013 |journal=Eur. J. Hum. Genet. |volume=21 |issue=10 |pages= |date=October 2013 |pmid=23463023 |pmc=3778360 |doi=10.1038/ejhg.2013.34 |url=}}</ref><ref name="pmid22160079">{{cite journal |vauthors=Ball S |title=Diamond Blackfan anemia |journal=Hematology Am Soc Hematol Educ Program |volume=2011 |issue= |pages=487–91 |date=2011 |pmid=22160079 |doi=10.1182/asheducation-2011.1.487 |url=}}</ref><ref name="pmid23744582">{{cite journal |vauthors=Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, Sullivan LM, Podsakoff GM, Gadue P, French DL, Mason PJ, Bessler M, Weiss MJ |title=Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients |journal=Blood |volume=122 |issue=6 |pages=912–21 |date=August 2013 |pmid=23744582 |pmc=3739037 |doi=10.1182/blood-2013-01-478321 |url=}}</ref> and they have a family history of the disease with varying phenotypes.<ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref>, although some of cases (GATA1-related DBA and TSR2-related DBA) are inherited in an [[X-linked]] manner.<ref name="pmid20301769">{{cite journal |vauthors=Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, Clinton C, Gazda HT |title= |journal= |volume= |issue= |pages= |date= |pmid=20301769 |doi= |url=}}</ref>.Also, [[autosomal recessive]] inheritance, with a lesser frequency has been reported.<ref name="pmid30881276">{{cite journal |vauthors=Engidaye G, Melku M, Enawgaw B |title=Diamond Blackfan Anemia: Genetics, Pathogenesis, Diagnosis and Treatment |journal=EJIFCC |volume=30 |issue=1 |pages=67–81 |date=March 2019 |pmid=30881276 |pmc=6416817 |doi= |url=}}</ref>Variable [[expressivity]] is seen in all RP gene mutations. Possible mechanisms underlying variable expressivity include an influence of modifier genes and environmental factors. <ref name="pmid20960466">{{cite journal |vauthors=Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L, Proust A, Leblanc T, Simansour M, Dahl N, Fröjmark AS, Pospisilova D, Cmejla R, Beggs AH, Sheen MR, Landowski M, Buros CM, Clinton CM, Dobson LJ, Vlachos A, Atsidaftos E, Lipton JM, Ellis SR, Ramenghi U, Dianzani I |title=The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update |journal=Hum. Mutat. |volume=31 |issue=12 |pages=1269–79 |date=December 2010 |pmid=20960466 |pmc=4485435 |doi=10.1002/humu.21383 |url=}}</ref <ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref> <ref name="pmid18230666">{{cite journal |vauthors=Choesmel V, Fribourg S, Aguissa-Touré AH, Pinaud N, Legrand P, Gazda HT, Gleizes PE |title=Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder |journal=Hum. Mol. Genet. |volume=17 |issue=9 |pages=1253–63 |date=May 2008 |pmid=18230666 |doi=10.1093/hmg/ddn015 |url=}}</ref>
**Other mutated genes have been found in RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS24, and RPS26, and rarely in RPL15, RPL17, RPL19, RPL26, RPL27, RPL31, RPS15A, RPS20, RPS27, RPS28, RPS29, that result in small or large [[ribosomal]] [[subunit]] synthesis deficiencies in human cells<ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref> <ref name="pmid18230666">{{cite journal |vauthors=Choesmel V, Fribourg S, Aguissa-Touré AH, Pinaud N, Legrand P, Gazda HT, Gleizes PE |title=Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder |journal=Hum. Mol. Genet. |volume=17 |issue=9 |pages=1253–63 |date=May 2008 |pmid=18230666 |doi=10.1093/hmg/ddn015 |url=}}</ref>
**Mutation of "Non-RP" genes such as [[TSR2]] and [[GATA1]], and EPO also were found.<ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref><ref name="pmid22706301">{{cite journal |vauthors=Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, Gazda HT |title=Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia |journal=J. Clin. Invest. |volume=122 |issue=7 |pages=2439–43 |date=July 2012 |pmid=22706301 |pmc=3386831 |doi=10.1172/JCI63597 |url=}}</ref><ref name="pmid24766296">{{cite journal |vauthors=Klar J, Khalfallah A, Arzoo PS, Gazda HT, Dahl N |title=Recurrent GATA1 mutations in Diamond-Blackfan anaemia |journal=Br. J. Haematol. |volume=166 |issue=6 |pages=949–51 |date=September 2014 |pmid=24766296 |doi=10.1111/bjh.12919 |url=}}</ref><ref name="pmid29551269">{{cite journal |vauthors=Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG |title=Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis |journal=Cell |volume=173 |issue=1 |pages=90–103.e19 |date=March 2018 |pmid=29551269 |pmc=5866246 |doi=10.1016/j.cell.2018.02.036 |url=}}</ref><ref name="pmid28283061">{{cite journal |vauthors=Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, Yuan D, Kazerounian S, Abdulhay NJ, King DS, Gupta N, Gabriel SB, Lander ES, Patiroglu T, Ozcan A, Ozdemir MA, Garcia KC, Piehler J, Gazda HT, Klein DE, Sankaran VG |title=Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation |journal=Cell |volume=168 |issue=6 |pages=1053–1064.e15 |date=March 2017 |pmid=28283061 |pmc=5376096 |doi=10.1016/j.cell.2017.02.026 |url=}}</ref>[[TSR2]] plays a role in ribosome biogenesis since it is involved in the [[pre-rRNA]] processing and binds to RPS26. [[GATA1]] which is the major erythroid transcription factor as being essential for precursor cells to differentiate into red blood cells and plays a critical role in regulating normal [[erythroid]] differentiation by activating of other erythroid genes.
**Mutation of "Non-RP" genes such as [[TSR2]] and [[GATA1]], and EPO also were found.<ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref><ref name="pmid22706301">{{cite journal |vauthors=Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, Gazda HT |title=Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia |journal=J. Clin. Invest. |volume=122 |issue=7 |pages=2439–43 |date=July 2012 |pmid=22706301 |pmc=3386831 |doi=10.1172/JCI63597 |url=}}</ref><ref name="pmid24766296">{{cite journal |vauthors=Klar J, Khalfallah A, Arzoo PS, Gazda HT, Dahl N |title=Recurrent GATA1 mutations in Diamond-Blackfan anaemia |journal=Br. J. Haematol. |volume=166 |issue=6 |pages=949–51 |date=September 2014 |pmid=24766296 |doi=10.1111/bjh.12919 |url=}}</ref><ref name="pmid29551269">{{cite journal |vauthors=Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG |title=Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis |journal=Cell |volume=173 |issue=1 |pages=90–103.e19 |date=March 2018 |pmid=29551269 |pmc=5866246 |doi=10.1016/j.cell.2018.02.036 |url=}}</ref><ref name="pmid28283061">{{cite journal |vauthors=Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, Yuan D, Kazerounian S, Abdulhay NJ, King DS, Gupta N, Gabriel SB, Lander ES, Patiroglu T, Ozcan A, Ozdemir MA, Garcia KC, Piehler J, Gazda HT, Klein DE, Sankaran VG |title=Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation |journal=Cell |volume=168 |issue=6 |pages=1053–1064.e15 |date=March 2017 |pmid=28283061 |pmc=5376096 |doi=10.1016/j.cell.2017.02.026 |url=}}</ref>[[TSR2]] plays a role in ribosome biogenesis since it is involved in the [[pre-rRNA]] processing and binds to RPS26. [[GATA1]] which is the major erythroid transcription factor as being essential for precursor cells to differentiate into red blood cells and plays a critical role in regulating normal [[erythroid]] differentiation by activating of other erythroid genes.
**In the remaining 10-15% of DBA cases, no abnormal genes have yet been identified. It is likely that mutations are in a regulatory region including intronic regions and promoters in one of the known RP genes and may account for the DBA phenotype. <ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref>
**In the remaining 10-15% of DBA cases, no abnormal genes have yet been identified. It is likely that mutations are in a regulatory region including intronic regions and promoters in one of the known RP genes and may account for the DBA phenotype. <ref name="pmid30228860">{{cite journal |vauthors=Da Costa L, Narla A, Mohandas N |title=An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia |journal=F1000Res |volume=7 |issue= |pages= |date=2018 |pmid=30228860 |pmc=6117846 |doi=10.12688/f1000research.15542.1 |url=}}</ref>

Revision as of 19:22, 25 September 2020

Diamond-Blackfan anemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Diamond-Blackfan anemia from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Diamond-Blackfan anemia causes On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Diamond-Blackfan anemia causes

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Diamond-Blackfan anemia causes

CDC on Diamond-Blackfan anemia causes

Diamond-Blackfan anemia causes in the news

Blogs on Diamond-Blackfan anemia causes

Directions to Hospitals Treating Diamond-Blackfan anemia

Risk calculators and risk factors for Diamond-Blackfan anemia causes

Overview

Diamond-Blackfan anemia is caused by heterozygous mutation in a gene encoding a small (RPS7, RPS10, RPS15A, RPS17, RPS19, RPS20, RPS24, RPS26, RPS27, RPS28, RPS29) or large (RPL5, RPL11, RPL15, RPL17, RPL19, RPL26, RPL27, RPL31, RPL35A) ribosomal subunit-associated protein in 80%-85% of the affected cases of DBA. In the remaining 10-15% of DBA cases, no abnormal genes have yet been identified. It is likely that mutations are in a regulatory region including intronic regions and promoters in one of the known RP genes and may account for the DBA phenotype.

Causes

  • in about 80-85% of cases Diamond-Blackfan anemia, a block in erythropoiesis occurs due to the ribosomal protein gene mutation.Ribosomal protein mutations are sprodaic(55%) or hereditary. Sporadic mutation occurs in genes encoding several different ribosomal proteins. About 25% of patients have mutations in the ribosome protein S19 (RPS19) gene on chromosome 19 at cytogenetic position 19q13.2. RPS19 has an important role in 18S rRNA maturation in yeast and in human cells. Other mutated genes have been found in RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS24, and RPS26, and rarely in RPL15, RPL17, RPL19, RPL26, RPL27, RPL31, RPS15A, RPS20, RPS27, RPS28, RPS29, that result in small or large ribosomal subunit synthesis deficiencies in human cells. Approximately 40-45 % DBA cases are inherited with an autosomal dominant inheritance.[1][2][3][4] and they have a family history of the disease with varying phenotypes.[5], although some of cases (GATA1-related DBA and TSR2-related DBA) are inherited in an X-linked manner.[6].Also, autosomal recessive inheritance, with a lesser frequency has been reported.[7]Variable expressivity is seen in all RP gene mutations. Possible mechanisms underlying variable expressivity include an influence of modifier genes and environmental factors. [8]
    • Mutation of "Non-RP" genes such as TSR2 and GATA1, and EPO also were found.[5][9][10][11][12]TSR2 plays a role in ribosome biogenesis since it is involved in the pre-rRNA processing and binds to RPS26. GATA1 which is the major erythroid transcription factor as being essential for precursor cells to differentiate into red blood cells and plays a critical role in regulating normal erythroid differentiation by activating of other erythroid genes.
    • In the remaining 10-15% of DBA cases, no abnormal genes have yet been identified. It is likely that mutations are in a regulatory region including intronic regions and promoters in one of the known RP genes and may account for the DBA phenotype. [5]

References

  1. Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, Handsaker RE, Abdulhay NJ, Fiorini C, Genovese G, Lim ET, Cheng A, Cummings BB, Chao KR, Beggs AH, Genetti CA, Sieff CA, Newburger PE, Niewiadomska E, Matysiak M, Vlachos A, Lipton JM, Atsidaftos E, Glader B, Narla A, Gleizes PE, O'Donohue MF, Montel-Lehry N, Amor DJ, McCarroll SA, O'Donnell-Luria AH, Gupta N, Gabriel SB, MacArthur DG, Lander ES, Lek M, Da Costa L, Nathan DG, Korostelev AA, Do R, Sankaran VG, Gazda HT (December 2018). "The Genetic Landscape of Diamond-Blackfan Anemia". Am. J. Hum. Genet. 103 (6): 930–947. doi:10.1016/j.ajhg.2018.10.027. PMC 6288280. PMID 30503522.
  2. Vlachos A, Dahl N, Dianzani I, Lipton JM (October 2013). "Clinical utility gene card for: Diamond-Blackfan anemia--update 2013". Eur. J. Hum. Genet. 21 (10). doi:10.1038/ejhg.2013.34. PMC 3778360. PMID 23463023.
  3. Ball S (2011). "Diamond Blackfan anemia". Hematology Am Soc Hematol Educ Program. 2011: 487–91. doi:10.1182/asheducation-2011.1.487. PMID 22160079.
  4. Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, Sullivan LM, Podsakoff GM, Gadue P, French DL, Mason PJ, Bessler M, Weiss MJ (August 2013). "Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients". Blood. 122 (6): 912–21. doi:10.1182/blood-2013-01-478321. PMC 3739037. PMID 23744582.
  5. 5.0 5.1 5.2 Da Costa L, Narla A, Mohandas N (2018). "An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia". F1000Res. 7. doi:10.12688/f1000research.15542.1. PMC 6117846. PMID 30228860.
  6. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean L, Stephens K, Amemiya A, Clinton C, Gazda HT. PMID 20301769. Vancouver style error: initials (help); Missing or empty |title= (help)
  7. Engidaye G, Melku M, Enawgaw B (March 2019). "Diamond Blackfan Anemia: Genetics, Pathogenesis, Diagnosis and Treatment". EJIFCC. 30 (1): 67–81. PMC 6416817. PMID 30881276.
  8. Choesmel V, Fribourg S, Aguissa-Touré AH, Pinaud N, Legrand P, Gazda HT, Gleizes PE (May 2008). "Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder". Hum. Mol. Genet. 17 (9): 1253–63. doi:10.1093/hmg/ddn015. PMID 18230666.
  9. Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, Gazda HT (July 2012). "Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia". J. Clin. Invest. 122 (7): 2439–43. doi:10.1172/JCI63597. PMC 3386831. PMID 22706301.
  10. Klar J, Khalfallah A, Arzoo PS, Gazda HT, Dahl N (September 2014). "Recurrent GATA1 mutations in Diamond-Blackfan anaemia". Br. J. Haematol. 166 (6): 949–51. doi:10.1111/bjh.12919. PMID 24766296.
  11. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG (March 2018). "Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis". Cell. 173 (1): 90–103.e19. doi:10.1016/j.cell.2018.02.036. PMC 5866246. PMID 29551269.
  12. Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, Yuan D, Kazerounian S, Abdulhay NJ, King DS, Gupta N, Gabriel SB, Lander ES, Patiroglu T, Ozcan A, Ozdemir MA, Garcia KC, Piehler J, Gazda HT, Klein DE, Sankaran VG (March 2017). "Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation". Cell. 168 (6): 1053–1064.e15. doi:10.1016/j.cell.2017.02.026. PMC 5376096. PMID 28283061.