Chronic lymphocytic leukemia other diagnostic studies: Difference between revisions

Jump to navigation Jump to search
(Created page with "{{Chronic lymphocytic leukemia}} {{CMG}} ==Overview== ==References== {{reflist|2}} {{Hematology}} {{Hematological malignancy histology}} Category:Disease [[Category:H...")
 
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
==Determining clonality==
The diagnosis of CLL is based on the demonstration of an abnormal population of B lymphocytes in the blood, bone marrow, or tissues that display an unusual but characteristic pattern of molecules on the cell surface. This atypical molecular pattern includes the co-expression of cells surface markers [[CD5|cluster of differentiation 5]] ([[CD5]]) and [[CD23|cluster of differentiation 23]] ([[CD23]]). In addition, all the CLL cells within one individual are functionally inert and clonal, that is genetically identical. In practice, this is inferred by the detection of only one of the mutually exclusive [[antibody light chains]], kappa or lambda, on the entire population of the abnormal B cells. Normal B lymphocytes consist of a stew of different antibody producing cells resulting in a mixture of both kappa and lambda expressing cells. The lack of the normal distribution of kappa and lambda producing B cells is one basis for demonstrating clonality, the key element for establishing a diagnosis of any B cell malignancy (B cell Non-Hodgkin lymphoma).
'''Clonality''' is confirmed by the combination of the microscopic examination of the peripheral blood and analysis of the lymphocytes by [[flow cytometry]]. The latter is easily accomplished on a small amount of blood. A flow cytometer is an instrument that can examine the marker molecule expression on individual cells in fluids. This is accomplished using antibodies with fluorescent tags recognized by the instrument. In CLL, the lymphocytes are genetically clonal, of the B cell lineage (express marker molecules CD19 and CD20), and characteristically express the marker molecules [[CD5]] and [[CD23]]. Morphologically, the cells resemble normal lymphocytes under the microscope, although slightly larger, and are fragile when smeared onto a glass slide giving rise to many broken cells (smudge cells).


==References==
==References==

Revision as of 01:43, 18 January 2012

Chronic lymphocytic leukemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Chronic lymphocytic leukemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Chronic lymphocytic leukemia other diagnostic studies On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Chronic lymphocytic leukemia other diagnostic studies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic lymphocytic leukemia other diagnostic studies

CDC on Chronic lymphocytic leukemia other diagnostic studies

Chronic lymphocytic leukemia other diagnostic studies in the news

Blogs on Chronic lymphocytic leukemia other diagnostic studies

Directions to Hospitals Treating Chronic lymphocytic leukemia

Risk calculators and risk factors for Chronic lymphocytic leukemia other diagnostic studies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Determining clonality

The diagnosis of CLL is based on the demonstration of an abnormal population of B lymphocytes in the blood, bone marrow, or tissues that display an unusual but characteristic pattern of molecules on the cell surface. This atypical molecular pattern includes the co-expression of cells surface markers cluster of differentiation 5 (CD5) and cluster of differentiation 23 (CD23). In addition, all the CLL cells within one individual are functionally inert and clonal, that is genetically identical. In practice, this is inferred by the detection of only one of the mutually exclusive antibody light chains, kappa or lambda, on the entire population of the abnormal B cells. Normal B lymphocytes consist of a stew of different antibody producing cells resulting in a mixture of both kappa and lambda expressing cells. The lack of the normal distribution of kappa and lambda producing B cells is one basis for demonstrating clonality, the key element for establishing a diagnosis of any B cell malignancy (B cell Non-Hodgkin lymphoma).

Clonality is confirmed by the combination of the microscopic examination of the peripheral blood and analysis of the lymphocytes by flow cytometry. The latter is easily accomplished on a small amount of blood. A flow cytometer is an instrument that can examine the marker molecule expression on individual cells in fluids. This is accomplished using antibodies with fluorescent tags recognized by the instrument. In CLL, the lymphocytes are genetically clonal, of the B cell lineage (express marker molecules CD19 and CD20), and characteristically express the marker molecules CD5 and CD23. Morphologically, the cells resemble normal lymphocytes under the microscope, although slightly larger, and are fragile when smeared onto a glass slide giving rise to many broken cells (smudge cells).

References

Template:Hematology


Template:WikiDoc Sources