Arachnoiditis: Difference between revisions

Jump to navigation Jump to search
Line 164: Line 164:
===Medical Therapy===
===Medical Therapy===
Treatment of arachnoiditis is palliative, and mostly medications are used for this purpose. Antidepressant and anticonvulsant analgesics are the mainstays of treatment. However, other classes of medications can also be beneficial. The U.S. Food and Drug Administration has approved several medications for neuropathic pain syndromes: pregabalin and duloxetine for diabetic neuropathy and gabapentin and pregabalin for postherpetic neuralgia. These medications are often used for the treatment of arachnoiditis with variable efficacy. These medications are often started at a low dosage and titrated upward as tolerated. Most of these medications take a few weeks to take analgesic effects to be reached. Some examples of these medications dosage are given in the table.
Treatment of arachnoiditis is palliative, and mostly medications are used for this purpose. Antidepressant and anticonvulsant analgesics are the mainstays of treatment. However, other classes of medications can also be beneficial. The U.S. Food and Drug Administration has approved several medications for neuropathic pain syndromes: pregabalin and duloxetine for diabetic neuropathy and gabapentin and pregabalin for postherpetic neuralgia. These medications are often used for the treatment of arachnoiditis with variable efficacy. These medications are often started at a low dosage and titrated upward as tolerated. Most of these medications take a few weeks to take analgesic effects to be reached. Some examples of these medications dosage are given in the table.
<br />
{| class="wikitable"
|+Examples of dosing regimens for Anticolvusant and antidepresasant medications
!Medication
!Starting dose
!Dose increase and interval
!Maximal dose
|-
|Tricyclic anti depressant
|10-25mg at night
|10-25 mg per week
|150 mg /day
|-
|Duloxetine
|20-30mg per day
|20-30 mg per week
|60mg /day
|-
|Pregabalin
|50-75mg BID
|50-75 mg per week
|600mg /day
|-
|Gabapentine
|100-300mg BID
|100-300 mg per week
|1800-3600mg /day
|}


===Surgery===
===Surgery===

Revision as of 00:44, 9 July 2020

WikiDoc Resources for Arachnoiditis

Articles

Most recent articles on Arachnoiditis

Most cited articles on Arachnoiditis

Review articles on Arachnoiditis

Articles on Arachnoiditis in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Arachnoiditis

Images of Arachnoiditis

Photos of Arachnoiditis

Podcasts & MP3s on Arachnoiditis

Videos on Arachnoiditis

Evidence Based Medicine

Cochrane Collaboration on Arachnoiditis

Bandolier on Arachnoiditis

TRIP on Arachnoiditis

Clinical Trials

Ongoing Trials on Arachnoiditis at Clinical Trials.gov

Trial results on Arachnoiditis

Clinical Trials on Arachnoiditis at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Arachnoiditis

NICE Guidance on Arachnoiditis

NHS PRODIGY Guidance

FDA on Arachnoiditis

CDC on Arachnoiditis

Books

Books on Arachnoiditis

News

Arachnoiditis in the news

Be alerted to news on Arachnoiditis

News trends on Arachnoiditis

Commentary

Blogs on Arachnoiditis

Definitions

Definitions of Arachnoiditis

Patient Resources / Community

Patient resources on Arachnoiditis

Discussion groups on Arachnoiditis

Patient Handouts on Arachnoiditis

Directions to Hospitals Treating Arachnoiditis

Risk calculators and risk factors for Arachnoiditis

Healthcare Provider Resources

Symptoms of Arachnoiditis

Causes & Risk Factors for Arachnoiditis

Diagnostic studies for Arachnoiditis

Treatment of Arachnoiditis

Continuing Medical Education (CME)

CME Programs on Arachnoiditis

International

Arachnoiditis en Espanol

Arachnoiditis en Francais

Business

Arachnoiditis in the Marketplace

Patents on Arachnoiditis

Experimental / Informatics

List of terms related to Arachnoiditis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.

Overview

Arachnoiditis is a term used to describe thickening, inflammation, and scaring of the arachnoid membrane, which is the middle layer surrounding the central nervous system. These abnormalities may be self-limited or may cause compression of the nerve roots and spinal cord. Patients may report a variety of clinical symptoms, including severe back pain that persists at rest, perineal/saddle numbness, neurological deficits, skin rashes, and sympathetic or vascular changes. The cause of arachnoiditis is unknown but may occur as a result of invasion (surgery), neuraxial injections, certain myelograms, infections, blood, a herniated disc, or tumors. Diagnosis is based on symptoms, and magnetic resonance imaging. Unfortunately, the treatment of arachnoiditis is difficult and limited and should focus on symptomatic management.

Historical Perspective

The phenomenon of adhesive arachnoiditis was first described by Quinke in 1893 in a case report. In 1897, Schwarz wrote about signs and symptoms of arachnoiditis caused by syphilis. Elkington wrote about the classic description of arachnoiditis in 1936 and termed it as meningitis serosa circumscripta spinalis. He also described various presentations of arachnoiditis in 1951. Foix and Alajouanine described a noninfectious spinal arachnoid scar reaction in 1926 and termed it as hypertrophic vascular ascending myelitis. Ransome and Monterio mentioned that tuberculous meningitis might present as extensive spinal arachnoiditis. The first case of arachnoiditis was associated with syphilis.[1][2][3]

Classification

National Organization for Rare Disorders (NORD) divides arachnoiditis into the following types.

  • Adhesive Arachnoiditis
  • Arachnoiditis Ossificans
  • Cerebral Arachnoiditis
  • Hereditary Arachnoiditis
  • Neoplastic Arachnoiditis
  • Optochiasmatic Arachnoiditis
  • Postmyelographic Arachnoiditis
  • Rhinosinusogenic Cerebral Arachnoiditis

The radiologists classify arachnoiditis, according to Delamarter's MRI classification.

• Type I—appears as an adhesive mass of adherent roots centrally in the thecal sac, considered mild arachnoiditis.

• Type II—the empty sac, the roots adhere peripherally to the meninges.

• Type III—a soft-tissue mass replaces the subarachnoid space.

Wilkinson developed another classification system that divided the myelographic appearances into four groups.

• Type I: A unilateral focal defect centered on the nerve root exit pouch adjacent to the intervertebral disc space.

• Type II: An annular or a circumferential defect with a bilateral notch and only filiform passage of the medium.

• Type III: Complete transverse obstruction with the picture of stalagmites, candle-guttering, or paintbrush defects.

• Type IV: An infundibuliform cul-de-sac with loss of radicular striation, a vitreous appearance, and cutting-off of the root sleeves.

Pathophysiology

{{#ev:youtube|XEBaA9LBZug}}

Causes

Common causes of arachnoiditis include the following.[4]

Differentiating arachnoiditis from other Diseases

Arachnoiditis is a clinical diagnosis that is supported by a combination of clinical history, physical examination, and radiography. Following pain syndromes may mimic arachnoiditis and should be considered in the differential diagnosis.[5][6][7]

Epidemiology and Demographics

Arachnoiditis is a rare disorder. Its exact incidence is hard to determine as its difficult-to-diagnose condition with a wide range of clinical presentations. Some cases of arachnoiditis may go undiagnosed or misdiagnosed. Therefore the exact incidence of arachnoiditis remains not only unknown but also likely significantly underestimated. However, recently the number of lumbar arachnoiditis cases are increasing due to lumbar supine surgeries and spinal anesthesia.[8] [9]

Arachnoiditis affects more females than males because two-thirds of pregnant females receive spinal or epidural anesthesia during child delivery.

Risk Factors

The major risk-factors of arachnoiditis are briefly highlighted below:

  • Bacterial, viral or fungal infections that spread to the brain and spinal cord
  • Diseases that weaknen the immune system e.g AIDS, diabetes or organ transplantation
  • Surgical or needle neural trauma
  • Intrathecal corticosteroids
  • Unintentional injection of subarachnoid blood
  • Injection of neurotoxic or neuroirritant substances into the subarachnoid space
  • Cancers such as melanoma, non-Hodgkin’s lymphoma, breast cancer, lung cancer as well as other cancers specific to the brain

Screening

There is insufficient evidence to recommend routine screening for arachnoiditis.

Natural History, Complications, and Prognosis

Symptoms of arachnoiditis often start after many years of the suspected inciting event. Chronic arachnoiditis can vary in severity from mild to moderate or may progress to severe and catastrophic, disrupting quality of life. There may be remissions and relapses; however: symptoms may resolve with treatment. The course of chronic arachnoiditis is typically irregular, but it is progressive in up to 33% of patients and non-progressive in 50-59%.

Aside from the chronic pain and various possible neurologic deficits, common complications of arachnoiditis may include hydrocephalus, syringomyelia, and arachnoid cysts. A rare complication is internal malabsorptive hydrocephalus.[10][11]

Supportive care and symptomatic management is the mainstay of treatment. Although this is not a life-threatening condition, the quality of life can be significantly compromised due to pain and neurological deficits. The course of the disease is very unpredictable. The majority of the patients have a stable neurological disability that does not progress over time.

Diagnosis

Diagnostic Study of Choice

There is no single best test for the definitive diagnosis of arachnoiditis. Diagnosis is based on clinical presentation, signs, and the supporting MRI or CT or myelography.

History and Symptoms

Patients suggestive of arachnoiditis should be asked about any history of spinal trauma, spinal cord infections, spinal surgery, or spinal anesthesia. Sometimes an inciting event can not be identified. Arachnoiditis symptoms vary from subclinical to advance and serve. Symptoms of arachnoiditis are challenging to distinguish from other types of compressive neurological diseases because many of the symptoms are similar, and the disease onset can be months to years from the initial injury. Patients will complain about pain, numbness, paraesthesia, and tingling in affected nerve root or roots.

  • Chronic and persistent pain in the lower back that may radiate down the legs
  • Muscle cramps, spasms, and uncontrolled twitching
  • Burning in the ankles and feet
  • Neurologic deficits

Physical Examination

The findings of the physical examination depend on which nerves are affected by the disease. A physical examination can reveal changes in reflexes, sensation, proprioception, or weakness.

Abnormal findings on the physical exam may include the following.

  • Reduced reflexes in extremities which are often asymmetrical
  • Loss of touch or vibration sensation
  • Pain on arms extension
  • Weakness of the extremities which is often asymmetrical
  • Restriction of range of extremities
  • Asymmetry of paraspinal muscle groups
  • Indentation of lower supine

Laboratory Findings

While the definitive diagnosis of arachnoiditis requires imaging, other tests contribute to understanding the risks of disease and may provide clues to the selection of treatment options. These tests include those that access the underlying inflammation and other hormonal levels that may be altered in chronic pain conditions. Addressing these conditions may improve the quality of life.

  1. CBC
  2. VDRL
  3. Inflammatory makers
    • C-Reactive Protein-High Sensitivity (CRP-HS)
    • Erythrocyte Sedimentation Rate (ESR)
    • Interleukins (IL-6)
    • Tumor Necrosis Factor (TNF)
  4. Hormone Assessments
    • Pregnenolone
    • DHEA
    • Cortisol
    • Progesterone
    • Estradiol
    • Testosterone

Radiography

Routine plain radiographs can not be used to evaluate spinal cord and nerve roots. However, the contents of the thecal sac can be evaluated with myelography with intrathecal administration of iodinated contrast. Conus medullaris usually terminates between T12-L1 and L1-L2 levels in adults. Below the level of conus medullaris termination, nerve roots float freely within the thecal sac. Meningeal inflammation can lead to thickened verve roots, the formation of CSF loculations, and blockage of CSF flow. Radiographic findings can aid in the diagnosis.

Computed Tomography

MRI is superior to CT scanning for the diagnosis of arachnoiditis because of poor contrast resolution in CT scans. However, CT myelography is useful in demonstrating the classic imaging findings of arachnoiditis. The classic image findings include narrowing or blockage of the subarachnoid space, thickened or matted nerve roots, soft tissue mass within the arachnoid space, as well as intrathecal calcification, irregular collections of contrast material, and absent filling of nerve root sleeves. The degree of confidence is high with myelography as compared to conventional CT. [12]

MRI

Imaging Findings

Other Diagnostic Studies

Treatment

Arachnoiditis is a difficult condition to treat. Treatment is limited to alleviation of pain and other symptoms. Surgical intervention generally has a poor outcome and only provides temporary relief. Steroid injection is generally discouraged and may worsen the condition.

Medical Therapy

Treatment of arachnoiditis is palliative, and mostly medications are used for this purpose. Antidepressant and anticonvulsant analgesics are the mainstays of treatment. However, other classes of medications can also be beneficial. The U.S. Food and Drug Administration has approved several medications for neuropathic pain syndromes: pregabalin and duloxetine for diabetic neuropathy and gabapentin and pregabalin for postherpetic neuralgia. These medications are often used for the treatment of arachnoiditis with variable efficacy. These medications are often started at a low dosage and titrated upward as tolerated. Most of these medications take a few weeks to take analgesic effects to be reached. Some examples of these medications dosage are given in the table.

Examples of dosing regimens for Anticolvusant and antidepresasant medications
Medication Starting dose Dose increase and interval Maximal dose
Tricyclic anti depressant 10-25mg at night 10-25 mg per week 150 mg /day
Duloxetine 20-30mg per day 20-30 mg per week 60mg /day
Pregabalin 50-75mg BID 50-75 mg per week 600mg /day
Gabapentine 100-300mg BID 100-300 mg per week 1800-3600mg /day

Surgery

Prevention

Future or Investigational Therapies

Recent research has indicated that a group of chemicals called cytokines that are produced by various cells in the body may be responsible for generating the pain response. Medications that affect the release of cytokines or block the action of cytokines may reduce the pain response. Various anti-cytokine medications are now being used to treat painful disease states such as Rheumatoid Arthritis and Crohn's Disease. In a recent study the anti-cytokine medication, Thalidomide, is being evaluated for its effect in treating pain associated with Arachnoiditis.

External links

References

  1. Elkington, J. St. C. (1951). Arachnoiditis. In Modern Trends in Neurology, ed. Anthony Feiling, ch. 5, pp. 149-161. Butterworths, London.
  2. ELKINGTON, J. St. C. (1936). Meningitis serosa circumscripta spinalis (spinal arachnoiditis). Brain, 59, 181-203
  3. Foix C, Alajouanine T . La myélite nécrotique subaigue. Rev Neurol (Paris) 1926; 2: 1–42.
  4. "Antonio Aldrete. Arachnoiditis. Orphanet. March, 2010".
  5. Vloeberghs M, Herregodts P, Stadnik T, Goossens A, D'Haens J. Spinal arachnoiditis mimicking a spinal cord tumor: a case report and review of the literature. Surg Neurol. 1992;37(3):211-215. doi:10.1016/0090-3019(92)90233-d
  6. Wright MH, Denney LC. A comprehensive review of spinal arachnoiditis. Orthop Nurs. 2003;22(3):215-221. doi:10.1097/00006416-200305000-00010
  7. Martin RJ, Yuan HA. Neurosurgical care of spinal epidural, subdural, and intramedullary abscesses and arachnoiditis. Orthop Clin North Am. 1996;27(1):125-136.
  8. Anderson TL, Morris JM, Wald JT, Kotsenas AL. Imaging Appearance of Advanced Chronic Adhesive Arachnoiditis: A Retrospective Review. AJR Am J Roentgenol. 2017;209(3):648-655. doi:10.2214/AJR.16.16704
  9. Todeschi J, Chibbaro S, Gubian A, Pop R, Proust F, Cebula H. Spinal adhesive arachnoiditis following the rupture of an Adamkiewicz aneurysm: Literature review and a case illustration. Neurochirurgie. 2018;64(3):177-182. doi:10.1016/j.neuchi.2017.11.003
  10. Di Ieva A, Barolat G, Tschabitscher M, et al. Lumbar arachnoiditis and thecaloscopy: brief review and proposed treatment algorithm. Cent Eur Neurosurg. 2010;71(4):207-212. doi:10.1055/s-0029-1243201
  11. Anderson TL, Morris JM, Wald JT, Kotsenas AL. Imaging Appearance of Advanced Chronic Adhesive Arachnoiditis: A Retrospective Review. AJR Am J Roentgenol. 2017;209(3):648-655. doi:10.2214/AJR.16.16704
  12. APA Dong, Aisheng, MD*; Zuo, Changjing, MD*; Zhang, Ping, MSc†; Lu, Jianping, MD‡; Bai, Yushu, MD§ MRI and FDG PET/CT Findings in 3 Cases of Spinal Infectious Arachnoiditis, Clinical Nuclear Medicine: October 2014 - Volume 39 - Issue 10 - p 900-903

Template:WH Template:WS