Osteoporosis classification

Revision as of 14:12, 24 August 2017 by Eiman (talk | contribs)
Jump to navigation Jump to search

Osteoporosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Osteoporosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Life Style Modification
Pharmacotherapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Osteoporosis classification On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Osteoporosis classification

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Osteoporosis classification

CDC on Osteoporosis classification

Osteoporosis classification in the news

Blogs on Osteoporosis classification

Directions to Hospitals Treating Osteoporosis

Risk calculators and risk factors for Osteoporosis classification

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Eiman Ghaffarpasand, M.D. [2]

Overview

Osteoporosis may be classified into several subtypes based on disease origin, and disease severity. Osteoporosis divided to primary and secondary diseases, upon classification based on disease etiology. While, it becomes divided to osteopenia, osteoporosis, and severe osteoporosis, upon classification based on disease severity. Osteoporosis in children and adolescents is rare, usually is due to some comorbidities or medications, secondary osteoporosis. Surprisingly, no significant causes have been found for rare cases, idiopathic osteoporosis.

Classification

Osteoporosis may be classified into several subtypes based on disease origin, and disease severity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Osteoporosis classifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on
Severity
 
 
 
 
 
 
 
 
 
 
 
Based on
Etiology
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
T-score measurement
 
 
 
 
 
 
 
 
 
 
 
Bone loss due to other diseases?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-1 > T-score > -2.5
 
 
T-score ≤ -2.5
 
 
T-score ≤ -2.5
plus
history of fracture
 
 
 
No
 
 
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Osteopenia
 
 
Osteoporosis
 
 
Severe osteoporosis
 
 
 
Primary osteoporosis
 
 
 
Secondary osteoporosis
 
 


Osteoporosis classification based on disease origin

One of the major classification systems for osteoporosis is based on the origin disease come from; including:

Osteoporosis classification based on disease severity

The main established classification system for osteoporosis is based on bone marrow density (BMD) in patients. The patients would be classified upon the site and method of measurements; also the used equipment and reference group of people may play roles. Finally, the major value using for classification of osteoporosis is T-score. T-score would be defined as "patient measured BMD value minus the reference BMD value (sex-matched and preferably for youth) divided the reference standard deviation (SD) (sex-matched and preferably for youth)".[2]

The common classification of osteoporosis upon BMD measured T-score is as following:

  • T-score less than -1 and more than -2.5 assumes as osteopenia
  • T-score equal to or less than -2.5 assumes as osteoporosis
  • T-score equal to or less than -2.5 with history of fracture assumes as severe osteoporosis

Lu and colleagues have found that pure using of T-score and comparing to reference normative data aged 20-29 years, as world health organization (WHO) criteria, is very inconsistent. Compared to other classification systems, it is better to standardize the normative data, maybe referring to older people; and also complex the findings of multiple sites BMD measures, in order to obtain a better classification system.[2]

Juvenile Osteoporosis (JO)

Osteoporosis in children and adolescents is rare, usually is due to some comorbidities or medications, secondary osteoporosis. Surprisingly, no significant causes have been found for rare cases, idiopathic osteoporosis.

No matter what causes it, juvenile osteoporosis can be a significant problem because it occurs during the child’s prime bone-building years. From birth through young adulthood, children steadily accumulate bone mass, which peaks sometime before age 30. The greater their peak bone mass, the lower their risk for osteoporosis later in life. After people reach their mid thirties, bone mass typically begins to decline—very slowly at first but increasing in their fifties and sixties. Both heredity and lifestyle choices—especially the amount of calcium in the diet and the level of physical activity influence the development of peak bone mass and the rate at which bone is lost later in life.

Secondary Osteoporosis

Disorders, Medications, and Behaviors That May Affect Bone Mass:

Primary Disorders

Medications

Behaviors

For children secondary osteoporosis, the best course of action is to identify and treat the underlying disorder. In the case of medication-induced juvenile osteoporosis, it is best to treat the primary disorder with the lowest effective dose of the osteoporosis-inducing medication. Like all children, those with secondary osteoporosis also need a diet rich in calcium and vitamin D and as much physical activity as possible given the limitations of the primary disorder.[3]

Idiopathic Juvenile Osteoporosis

  • Idiopathic juvenile osteoporosis (IJO) is a primary condition with no known cause. It is diagnosed after other causes of juvenile osteoporosis have been excluded. This rare form of osteoporosis typically occurs just before the onset of puberty in previously healthy children. The average age at onset is 7 years, with a range of 1 to 13 years. Most children experience complete recovery of bone.
  • The first sign of IJO is usually pain in the lower back, hips, and feet, often accompanied by difficulty walking. Knee and ankle pain and fractures of the lower extremities also may occur. Physical malformations include kyphosis, loss of height, a sunken chest, or a limp. These physical malformations are sometimes reversible after IJO has run its course.
  • There is no established medical or surgical therapy for juvenile osteoporosis. In some cases, no treatment may be needed because the condition usually goes away spontaneously. However, early diagnosis of juvenile osteoporosis is important so that steps can be taken to protect the child’s spine and other bones from fracture until remission occurs. These steps may include physical therapy, using crutches, avoiding unsafe weight-bearing activities, and other supportive care. A well-balanced diet rich in calcium and vitamin D is also important. In severe, long-lasting cases of juvenile osteoporosis, some medications called bisphosphonates, approved by the Food and Drug Administration for the treatment of osteoporosis in adults, have been given to children experimentally.
  • Most children with IJO experience a complete recovery of bone tissue. Although growth may be somewhat impaired during the acute phase of the disorder, normal growth resumes—and catch-up growth often occurs—afterward. Unfortunately, in some cases, IJO can result in permanent disability such as kyphoscoliosis or collapse of the rib cage.[3]

References

  1. Marcus, Robert (2013). Osteoporosis. Amsterdam: Elsevier/Academic Press. ISBN 9780124158535.
  2. 2.0 2.1 Lu Y, Genant HK, Shepherd J, Zhao S, Mathur A, Fuerst TP, Cummings SR (2001). "Classification of osteoporosis based on bone mineral densities". J. Bone Miner. Res. 16 (5): 901–10. doi:10.1359/jbmr.2001.16.5.901. PMID 11341335.
  3. 3.0 3.1 3.2 "Juvenile Osteoporosis".

Template:WS Template:WH