Cardiogenic shock overview: Difference between revisions

Jump to navigation Jump to search
Line 3: Line 3:
{{CMG}}
{{CMG}}
==Overview==
==Overview==
 
'''Cardiogenic shock''' is defined as a state of systemic [[hypoperfusion]], originated in [[heart failure|cadiac failure]] and with adequate [[intravascular]] volume, typically followed by [[hypotension]], which results in the insufficient ability to meet [[oxygen]] and [[nutrient]] demands of [[organs]] and other peripheral tissues.<ref>{{Cite book  | last1 = Hasdai | first1 = David. | title = Cardiogenic shock : diagnosis and treatmen | date = 2002 | publisher = Humana Press | location = Totowa, N.J. | isbn = 1-58829-025-5 | pages =  }}</ref> It may range from mild to severe [[hypoperfusion]] and may be defined in terms of [[hemodynamic]] parameters, which according to most studies, means a state in which [[systolic blood pressure]] is persistently < 90 mm Hg or < 80 mm Hg, for longer than 1 hour, with adequate or elevated left and right ventricular filling pressures and that:<ref>{{cite book | last = Hochman | first = Judith | title = Cardiogenic shock | publisher = Wiley-Blackwell | location = Chichester, West Sussex, UK Hoboken, NJ | year = 2009 | isbn = 1405179260  }}</ref><ref name="GoldbergGore1991">{{cite journal|last1=Goldberg|first1=Robert J.|last2=Gore|first2=Joel M.|last3=Alpert|first3=Joseph S.|last4=Osganian|first4=Voula|last5=de Groot|first5=Jacques|last6=Bade|first6=Jurgen|last7=Chen|first7=Zuoyao|last8=Frid|first8=David|last9=Dalen|first9=James E.|title=Cardiogenic Shock after Acute Myocardial Infarction|journal=New England Journal of Medicine|volume=325|issue=16|year=1991|pages=1117–1122|issn=0028-4793|doi=10.1056/NEJM199110173251601}}</ref><ref name="GoldbergSamad1999">{{cite journal|last1=Goldberg|first1=Robert J.|last2=Samad|first2=Navid A.|last3=Yarzebski|first3=Jorge|last4=Gurwitz|first4=Jerry|last5=Bigelow|first5=Carol|last6=Gore|first6=Joel M.|title=Temporal Trends in Cardiogenic Shock Complicating Acute Myocardial Infarction|journal=New England Journal of Medicine|volume=340|issue=15|year=1999|pages=1162–1168|issn=0028-4793|doi=10.1056/NEJM199904153401504}}</ref>
'''Cardiogenic shock''' is defined as an insufficient forward [[cardiac output]] to maintain adequate perfusion of vital organs to meet ongoing demands for oxygenation and metabolism. Cardiogenic shock is due to either inadequate left ventricular pump function (such as in [[congestive heart failure]]) or inadequate left ventricular filling (such as in [[cardiac tamponade]] or [[mitral stenosis]] with tachycardia)In so far as the course of treatment differs substantially, cardiogenic shock should be distinguished from other forms of [[shock]] such as [[septic shock]], [[distributive shock]], [[hypovolemic shock]] and [[neurogenic shock]].
*does not respond to isolated fluid administration;
*is secondary to [[heart failure|cardiac failure]];
*happens with signs of [[hypoperfusion]] (such as [[oliguria]], [[cool extremities]], [[cyanosis]] and [[altered mental status]]) or a [[cardiac index]] of < 2.2 L/min/m², if on inotropic, vasopressor or circulatory device support, or < 1.8-2.2 L/min/m², if off support, and pulmonary artery wedge pressure > 18 mm Hg.<ref>{{Cite journal  | last1 = Menon | first1 = V. | last2 = Slater | first2 = JN. | last3 = White | first3 = HD. | last4 = Sleeper | first4 = LA. | last5 = Cocke | first5 = T. | last6 = Hochman | first6 = JS. | title = Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry. | journal = Am J Med | volume = 108 | issue = 5 | pages = 374-80 | month = Apr | year = 2000 | doi =  | PMID = 10759093 }}</ref><ref name="Hasdai-1999">{{Cite journal  | last1 = Hasdai | first1 = D. | last2 = Holmes | first2 = DR. | last3 = Califf | first3 = RM. | last4 = Thompson | first4 = TD. | last5 = Hochman | first5 = JS. | last6 = Pfisterer | first6 = M. | last7 = Topol | first7 = EJ. | title = Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries. | journal = Am Heart J | volume = 138 | issue = 1 Pt 1 | pages = 21-31 | month = Jul | year = 1999 | doi =  | PMID = 10385759 }}</ref><ref name="Fincke-2004">{{Cite journal | last1 = Fincke | first1 = R. | last2 = Hochman | first2 = JS. | last3 = Lowe | first3 = AM. | last4 = Menon | first4 = V. | last5 = Slater | first5 = JN. | last6 = Webb | first6 = JG. | last7 = LeJemtel | first7 = TH. | last8 = Cotter | first8 = G. | title = Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. | journal = J Am Coll Cardiol | volume = 44 | issue = 2 | pages = 340-8 | month = Jul | year = 2004 | doi = 10.1016/j.jacc.2004.03.060 | PMID = 15261929 }}</ref><ref name="DzavikCotter2007">{{cite journal|last1=Dzavik|first1=V.|last2=Cotter|first2=G.|last3=Reynolds|first3=H. R.|last4=Alexander|first4=J. H.|last5=Ramanathan|first5=K.|last6=Stebbins|first6=A. L.|last7=Hathaway|first7=D.|last8=Farkouh|first8=M. E.|last9=Ohman|first9=E. M.|last10=Baran|first10=D. A.|last11=Prondzinsky|first11=R.|last12=Panza|first12=J. A.|last13=Cantor|first13=W. J.|last14=Vered|first14=Z.|last15=Buller|first15=C. E.|last16=Kleiman|first16=N. S.|last17=Webb|first17=J. G.|last18=Holmes|first18=D. R.|last19=Parrillo|first19=J. E.|last20=Hazen|first20=S. L.|last21=Gross|first21=S. S.|last22=Harrington|first22=R. A.|last23=Hochman|first23=J. S.|title=Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study|journal=European Heart Journal|volume=28|issue=9|year=2007|pages=1109–1116|issn=0195-668X|doi=10.1093/eurheartj/ehm075}}</ref>
Despite the importance of these values, the [[diagnosis]] of [[shock]] is primarily made based on the clinical findings and only then, supported by the measurement of [[hemodynamic]] values, which may be obtained through [[pulmonary artery catheterization]] or [[doppler echocardiography]]. The level of [[hemodynamic]] derangement will directly dictate the short-term outcome of the [[patient]].<ref name="ReynoldsHochman2008">{{cite journal|last1=Reynolds|first1=H. R.|last2=Hochman|first2=J. S.|title=Cardiogenic Shock: Current Concepts and Improving Outcomes|journal=Circulation|volume=117|issue=5|year=2008|pages=686–697|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.106.613596}}</ref><ref name="pmid8195524">{{cite journal| author=Giannuzzi P, Imparato A, Temporelli PL, de Vito F, Silva PL, Scapellato F et al.| title=Doppler-derived mitral deceleration time of early filling as a strong predictor of pulmonary capillary wedge pressure in postinfarction patients with left ventricular systolic dysfunction. | journal=J Am Coll Cardiol | year= 1994 | volume= 23 | issue= 7 | pages= 1630-7 | pmid=8195524 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8195524  }} </ref>
Although there are several possible causes for [[cardiogenic shock]], the most common remain the [[myocardial infarction]] and the [[left ventricular failure]]. Nevertheless, it is important to exclude possible mechanical [[complications]], which in the presence of [[myocardial infarction]] might be responsible for the [[shock]].<ref name="ReynoldsHochman2008">{{cite journal|last1=Reynolds|first1=H. R.|last2=Hochman|first2=J. S.|title=Cardiogenic Shock: Current Concepts and Improving Outcomes|journal=Circulation|volume=117|issue=5|year=2008|pages=686–697|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.106.613596}}</ref>


== Definition ==
== Definition ==

Revision as of 02:26, 30 April 2014

Cardiogenic Shock Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiogenic shock from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiogenic shock overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiogenic shock overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiogenic shock overview

CDC on Cardiogenic shock overview

Cardiogenic shock overview in the news

Blogs on Cardiogenic shock overview

Directions to Hospitals Treating Cardiogenic shock

Risk calculators and risk factors for Cardiogenic shock overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Cardiogenic shock is defined as a state of systemic hypoperfusion, originated in cadiac failure and with adequate intravascular volume, typically followed by hypotension, which results in the insufficient ability to meet oxygen and nutrient demands of organs and other peripheral tissues.[1] It may range from mild to severe hypoperfusion and may be defined in terms of hemodynamic parameters, which according to most studies, means a state in which systolic blood pressure is persistently < 90 mm Hg or < 80 mm Hg, for longer than 1 hour, with adequate or elevated left and right ventricular filling pressures and that:[2][3][4]

Despite the importance of these values, the diagnosis of shock is primarily made based on the clinical findings and only then, supported by the measurement of hemodynamic values, which may be obtained through pulmonary artery catheterization or doppler echocardiography. The level of hemodynamic derangement will directly dictate the short-term outcome of the patient.[9][10] Although there are several possible causes for cardiogenic shock, the most common remain the myocardial infarction and the left ventricular failure. Nevertheless, it is important to exclude possible mechanical complications, which in the presence of myocardial infarction might be responsible for the shock.[9]

Definition

Cardiogenic shock is defined as sustained hypotension (>30 minutes) with evidence of tissue hypoperfusion despite adequate left ventricular filling pressure. Signs of tissue hypoperfusion include oliguria (<30 mL/h), cool extremities, cyanosis and altered mentation.

The pathophysiology of cardiogenic shock is complex and multifactorial. Furthermore, there are a variety of compensatory mechanisms in response to the pathophysiology that can mask the underlying hemodynamic derangements that may be present. As a result, the diagnostic criteria for cardiogenic shock are complex and have been debated.

Given that the condition is a form of "shock", many clinicians argue that by definition "shock" must therefore be present. However, some clinicians argue that hypotension alone should not be the key criteria in so far as compensatory tachycardia and vasoconstriction may compensate for the reduced cardiac output to yield only a mildly depressed systolic blood pressure. These clinicians advocate a hemodynamic definition with greater reliance placed on hemodynamic measures and interpretation of the cardiac output in the context of left ventricular filling pressure as often gauged by the pulmonary capillary wedge pressure. For instance, a patient who has a history of hypertension who now has a blood pressure of 100 mm Hg with a markedly elevated systemic vascular resistance (SVR) and pronounced tachycardia with a markedly reduced cardiac output, would be in cardiogenic shock in the judgement of some clinicians despite the absence of hypotension. Some definitions require a drop in systolic blood pressure of 30 mm Hg.

Pathophysiology

Cardiogenic shock is inadequate cardiac output due to myocardial depression caused by various factors. Inflammatory mediators generated due to infarction or ischemia cause myocardial muscle depression causing a loss in the contractile ability of the heart and in turn hypotension. Lactic acidosis that develops as a result of poor systemic perfusion also depresses the myocardium.

Epidemiology and Demographics

The incidence of cardiogenic shock among patients with acute MI is approximately 5% to 10%.[11][12] Because atherosclerosis and myocardial infarction are both more frequent among men, the number of men developing cardiogenic shock exceeds that of women. However, because women present with acute myocardial infarction at a later age than men, and because they may have more multivessel disease when they do present at a later age, a greater proportion of women with acute MI develop cardiogenic shock.[13]

Risk Factors

Several triggers have been associated with an increased risk of developing cardiogenic shock. Advanced age and MI are among the most common predisposing risk factors.

Diagnosis

Electrocardiogram

An electrocardiogram may be useful in distinguishing cardiogenic shock from septic shock or neurogenic shock. A diagnosis of cardiogenic shock is suggested by the presence of ST segment changes, new left bundle branch block or signs of a cardiomyopathy. Cardiac arrhythmias may also be present.

Chest X-ray

The chest x ray will show pulmonary edema, pulmonary vascular redistribution, enlarged hila, kerley's B lines, and bilateral pleural effusions in patients with left ventricular failure. In contrast, a pneumonia may be present in the patient with septic shock.

Echocardiography

Echocardiography is important imaging modality in the evaluation of the patient with cardiogenic shock. It allows the clinician to distinguish cardiogenic shock from septic shock and neurogenic shock. In cardiogenic shock due to acute MI, poor wall motion will be present. In septic shock, a hypercontractile ventricle may be present. Mechanical complications such as papillary muscle rupture, pseudoaneurysm, and a ventricular septal defect may also be visualized. Valvular heart disease such as aortic stenosis, aortic insufficiency and mitral stenosis can also be assessed. Dynamic outflow obstruction such as HOCM can also be identified and quantified. The magnitude of left ventricular dysfunction in patients with cardiomyopathy can be evaluated.

References

  1. Hasdai, David. (2002). Cardiogenic shock : diagnosis and treatmen. Totowa, N.J.: Humana Press. ISBN 1-58829-025-5.
  2. Hochman, Judith (2009). Cardiogenic shock. Chichester, West Sussex, UK Hoboken, NJ: Wiley-Blackwell. ISBN 1405179260.
  3. Goldberg, Robert J.; Gore, Joel M.; Alpert, Joseph S.; Osganian, Voula; de Groot, Jacques; Bade, Jurgen; Chen, Zuoyao; Frid, David; Dalen, James E. (1991). "Cardiogenic Shock after Acute Myocardial Infarction". New England Journal of Medicine. 325 (16): 1117–1122. doi:10.1056/NEJM199110173251601. ISSN 0028-4793.
  4. Goldberg, Robert J.; Samad, Navid A.; Yarzebski, Jorge; Gurwitz, Jerry; Bigelow, Carol; Gore, Joel M. (1999). "Temporal Trends in Cardiogenic Shock Complicating Acute Myocardial Infarction". New England Journal of Medicine. 340 (15): 1162–1168. doi:10.1056/NEJM199904153401504. ISSN 0028-4793.
  5. Menon, V.; Slater, JN.; White, HD.; Sleeper, LA.; Cocke, T.; Hochman, JS. (2000). "Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry". Am J Med. 108 (5): 374–80. PMID 10759093. Unknown parameter |month= ignored (help)
  6. Hasdai, D.; Holmes, DR.; Califf, RM.; Thompson, TD.; Hochman, JS.; Pfisterer, M.; Topol, EJ. (1999). "Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries". Am Heart J. 138 (1 Pt 1): 21–31. PMID 10385759. Unknown parameter |month= ignored (help)
  7. Fincke, R.; Hochman, JS.; Lowe, AM.; Menon, V.; Slater, JN.; Webb, JG.; LeJemtel, TH.; Cotter, G. (2004). "Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry". J Am Coll Cardiol. 44 (2): 340–8. doi:10.1016/j.jacc.2004.03.060. PMID 15261929. Unknown parameter |month= ignored (help)
  8. Dzavik, V.; Cotter, G.; Reynolds, H. R.; Alexander, J. H.; Ramanathan, K.; Stebbins, A. L.; Hathaway, D.; Farkouh, M. E.; Ohman, E. M.; Baran, D. A.; Prondzinsky, R.; Panza, J. A.; Cantor, W. J.; Vered, Z.; Buller, C. E.; Kleiman, N. S.; Webb, J. G.; Holmes, D. R.; Parrillo, J. E.; Hazen, S. L.; Gross, S. S.; Harrington, R. A.; Hochman, J. S. (2007). "Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study". European Heart Journal. 28 (9): 1109–1116. doi:10.1093/eurheartj/ehm075. ISSN 0195-668X.
  9. 9.0 9.1 Reynolds, H. R.; Hochman, J. S. (2008). "Cardiogenic Shock: Current Concepts and Improving Outcomes". Circulation. 117 (5): 686–697. doi:10.1161/CIRCULATIONAHA.106.613596. ISSN 0009-7322.
  10. Giannuzzi P, Imparato A, Temporelli PL, de Vito F, Silva PL, Scapellato F; et al. (1994). "Doppler-derived mitral deceleration time of early filling as a strong predictor of pulmonary capillary wedge pressure in postinfarction patients with left ventricular systolic dysfunction". J Am Coll Cardiol. 23 (7): 1630–7. PMID 8195524.
  11. Goldberg RJ, Samad NA, Yarzebski J, et al. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med. Apr 15 1999;340(15):1162-8.
  12. Hasdai D, Holmes DR, Topol EJ, et al. Frequency and clinical outcome of cardiogenic shock during acute myocardial infarction among patients receiving reteplase or alteplase. Results from GUSTO-III. Global Use of Strategies to Open Occluded Coronary Arteries. Eur Heart J. Jan 1999;20(2):128-35.
  13. Hasdai D, Califf RM, Thompson TD, et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol. Jan 2000;35(1):136-43.


Template:WikiDoc Sources