Tuberculosis medical therapy special conditions: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Tuberculosis}}
{{Tuberculosis}}
{{CMG}}; {{AE}} {{JS}}
{{CMG}}; {{AE}} {{JS}} {{Ammu}}


==Overview==
==Overview==

Revision as of 22:25, 23 September 2014

Tuberculosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Tuberculosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Children

HIV Coinfection

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Special Conditions
Drug-resistant

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Tuberculosis medical therapy special conditions On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Tuberculosis medical therapy special conditions

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Tuberculosis medical therapy special conditions

CDC on Tuberculosis medical therapy special conditions

Tuberculosis medical therapy special conditions in the news

Blogs on Tuberculosis medical therapy special conditions

Directions to Hospitals Treating Tuberculosis

Risk calculators and risk factors for Tuberculosis medical therapy special conditions

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2] Ammu Susheela, M.D. [3]

Overview

HIV Coinfection

Depending on the treatment status of each patient, different approaches may be taken:[1]

Patients Not Taking ART

  • After the diagnosis of TB in HIV-positive patients, not taking antiretroviral therapy (ART), the priority is to initiate treatment for TB, along with co-trimoxazole and ART.
  • These patients should be treated with the same regimen as HIV-negative patients, with the exception that the optional 3 times/week of intensive phase treatment, is mandatory for HIV-positive patients. This leads to a decrease in incidence of TB relapse and resistance to rifampicin, often seen in HIV-positive patients.[2][3]
  • The retreatment regimens are the same for HIV-positive and HIV-negative patients.

According to the WHO, the following recommendations should be applied to these patients:[3]

  • Patients with TB, who are known to be HIV-positive, and all TB patients who live in areas where HIV is prevalent, should be treated with at least the intensive phase of the TB treatment.
  • During the continuation phase of the treatment, these patients should also receive a daily dose.
  • In the impossibility of taking the daily dose, a continuation phase of 3 times/week is acceptable. Regarding the duration of therapy, some experts recommend prolongation of TB treatment in certain HIV-positive patients.[4]
  • HIV-positive patients with TB should receive TB treatment, as least for the same period of time as HIV-negative patients.

Patients Taking ART

Besides improving the survival rate of HIV-positive patients,

Co-trimoxazole

Preventive therapy with co-trimoxazole should be initiated as early as possible in all TB patients who are HIV-positive, and should be continued during the entire treatment of TB. Co-trimoxazol reduces the mortality rate of HIV-positive tuberculous patients, as well as infections by Pneumocystis jirovecii and malaria. After TB treatment has been complete, continuation of co-trimoxazol should be evaluated according to each country's guidelines.[1][5]

Extrapulmonary

Tuberculous Lymphadenitis

The infectious disease society of America(IDSA) recommends treatment for 6 months for drug susceptible organism.

Studies have shown that steroids used for local discomfort and adjuvant immunotherapy with anti tumor necrosis factor agents can be beneficial but no specific recommendation has been made. [6]

Skeletal Tuberculosis

The main stay of treatment for skeletal tuberculosis is antibiotics and surgery. The selection of antibiotics for skeletal tuberculosis is the same as that of pulmonary tuberculosis.

Stage Treatment
Stage 1 (synovitis)
   Chemotherapy
   Rest
   Restriction of movements
   Splinting
Stage 2 (Early arthritis)
   Chemotherapy
   Rest
   Restriction of movements
   Splinting
   Synovectomy
Stage 3 (Advanced arthritis)
   Chemotherapy
   Osteotomy
   Arthrodesis
   Arthroplasty
Stage 4 (Advanced arthritis)
   Chemotherapy
   Osteotomy
   Arthrodesis
   Arthroplasty
Stage 5
   Chemotherapy
   Osteotomy
   Arthrodesis
   Arthroplasty

Tuberculous Meningitis

The treatment of TB meningitis is 2 months of isoniazid, ethambutol, pyrazinamide and rifampicin, followed by rifampicin and isoniazid alone for a further ten months. Steroids help reduce the risk of death or disabling neurological deficit.[6] Steroids can be used in the first six weeks of treatment, but must be used with caution in individuals who also have HIV.[7] A few patients may require immunomodulatory agents such as thalidomide. Treatment must be started as soon as there is a reasonable suspicion of the diagnosis. Treatment must not be delayed while waiting for confirmation of the diagnosis. Hydrocephalus occurs as a complication in about a third of patients with TB meningitis and will require a ventricular shunt. Aspirin may be used as anadjuvant therapy to reduce complications.[8] BCG vaccination has been proved to prevent tuberculous meningitis.

Miliary Tuberculosis

Miliary tuberculosis is a grave condition which must be treated immediately. A delay in treatment may cause serious complications and even death. 8-9 months is the time of treatment for susceptible organism. Treatment of miliary tuberculosis includes 6 months of daily or intermittent treatment. [9]. Expert opinion suggests that corticosteroid therapy may be useful for treating respiratory failure caused by disseminated tuberculosis but there are no data to support its use.

Tuberculosis Peritonitis

Tuberculous Pericarditis

A 2 months course of isoniazid, pyrazinamide, rifampicin, and ethambutol followed by 4 months course of isoniazid and rifampicin is shown to be effective [10]. For patients with pericardial tuberculosis, a 6-month regimen is recommended. Corticosteroids are recommended as adjunctive therapy for tuberculous pericarditis during the first 11 weeks of antituberculosis therapy. In a randomized, double-blind, controlled trial, patients in the later effusive--constrictive phase who received prednisolone had a significantly more rapid clinical resolution compared with patients given placebo. Prednisolone did not reduce the risk of constrictive pericarditis. It is recommended that daily adjunctive prednisolone or prednisone alone treatment be given to adults and children with tuberculous pericarditis. Following are the dosage recommendations:

  • Adults: Prednisone 60 mg/day given for 4 weeks, followed by 30 mg/day for 4 weeks, 15 mg/day for 2 weeks, and finally 5 mg/day for week 11 (the final week)
  • Children: Doses should be proportionate to their weight, beginning with about 1 mg/kg body weight and decreasing the dose as described for adults.[11]

Renal Tuberculosis

Liver Disease

Referencies

  1. 1.0 1.1 Harries AD, Zachariah R, Lawn SD (2009). "Providing HIV care for co-infected tuberculosis patients: a perspective from sub-Saharan Africa". Int J Tuberc Lung Dis. 13 (1): 6–16. PMID 19105873.
  2. Khan FA, Minion J, Pai M, Royce S, Burman W, Harries AD; et al. (2010). "Treatment of active tuberculosis in HIV-coinfected patients: a systematic review and meta-analysis". Clin Infect Dis. 50 (9): 1288–99. doi:10.1086/651686. PMID 20353364.
  3. 3.0 3.1 "2013 WHO Treatment of Tuberculosis: Guidelines for National Programmes (4th Edition)".
  4. "Treatment of tuberculosis".
  5. "Co-trimoxazole prophylaxis".
  6. "Oxford journal TB lymphadenitis".
  7. Prasad K, Singh MB (2008). "Corticosteroids for managing tuberculous meningitis". Cochrane Database Syst Rev (1): CD002244. doi:10.1002/14651858.CD002244.pub3. PMID 18254003.
  8. Misra UK, Kalita J, Nair PP (2010). "Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial". J Neurol Sci. 293 (1–2): 12–7. doi:10.1016/j.jns.2010.03.025. PMID 20421121.
  9. Sharma SK, Mohan A, Sharma A (2012). "Challenges in the diagnosis & treatment of miliary tuberculosis". Indian J Med Res. 135 (5): 703–30. PMC 3401706. PMID 22771605.
  10. Cohn DL, Catlin BJ, Peterson KL, Judson FN, Sbarbaro JA (1990). "A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis. A twice-weekly, directly observed, and cost-effective regimen". Ann Intern Med. 112 (6): 407–15. PMID pmid2106816 Check |pmid= value (help).
  11. American Thoracic Society. CDC. Infectious Diseases Society of America (2003). "Treatment of tuberculosis". MMWR Recomm Rep. 52 (RR-11): 1–77. PMID pmid12836625 Check |pmid= value (help).

Template:WH Template:WS