# Mechanics

**Mechanics** (Greek *Μηχανική*) is the branch of physics concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effect of the bodies on their environment.

The discipline has its roots in several ancient civilizations. During the early modern period, scientists such as Galileo, Kepler, and especially Newton, laid the foundation for what is now known as Classical mechanics.

## Contents

## Significance

Mechanics is the original discipline of physics and was formerly known as natural philosophy, dealing with forces and motion in the macroscopic world as the human eye perceives it. It has developed into a huge body of knowledge about important aspects of the natural world. Modern mechanics encompasses the movement of all matter in the universe under the four fundamental interactions (or forces): gravity, the strong and weak interactions, and the electromagnetic interaction.

Mechanics also constitutes a central part of technology, the application of physical knowledge for humanly defined purposes. In this connection, the discipline is often known as engineering or applied mechanics. In this sense, mechanics is used to design and analyze the behavior of structures, mechanisms, and machines. Important aspects of the fields of mechanical engineering, aerospace engineering, civil engineering, structural engineering, materials engineering, biomedical engineering and biomechanics were spawned from the study of mechanics.

## Classical versus quantum

Template:Classical mechanics Template:Quantum mechanics................ The major division of the mechanics discipline separates classical mechanics from quantum mechanics.

Historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newton's Laws of motion in Principia Mathematica, while quantum mechanics didn't appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.

Quantum mechanics is of a wider scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. Quantum mechanics has superseded classical mechanics at foundational level and is indispensable for the explanation and prediction of processes at molecular and (sub)atomic level. However, for macroscopical processes classical mechanics is able to solve problems which are unmanageably difficult in quantum mechanics and hence remains useful and well used.

## Einsteinian versus Newtonian

Analogous to the quantum versus classical reformation, Einstein's general and special theories of relativity have expanded the scope of mechanics beyond the mechanics of Newton and Galileo, and made small corrections to them. Relativistic corrections were also needed for quantum mechanics, although relativity is categorized as a classical theory.

There are no contradictions or conflicts between the two, so long as the specific circumstances are carefully kept in mind. Just as one could, in the loosest possible sense, characterize classical mechanics as dealing with "large" bodies (such as engine parts), and quantum mechanics with "small" ones (such as particles), it could be said that relativistic mechanics deals with "fast" bodies, and non-relativistic mechanics with "slow" ones. However, "fast" and "slow" are subjective concepts, depending on the state of motion of the observer. This means that all mechanics, whether classical or quantum, potentially needs to be described relativistically. On the other hand, as an observer, one may frequently arrange the situation in such a way that this is not really required.

## Types of mechanical bodies

Thus the often-used term **body** needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), etc.

Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space.

Otherwise, bodies may be semi-rigid, i.e. elastic, or non-rigid, i.e. fluid. These subjects have both classical and quantum divisions of study.

For instance: The motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics. While analogous motions of an atomic nucleus are described by quantum mechanics.

## Sub-disciplines in mechanics

The following are two lists of various subjects that are studied in mechanics.

Note that there is also the "theory of fields" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function.

### Classical mechanics

The following are described as forming Classical mechanics:

- Newtonian mechanics, the original theory of motion (kinematics) and forces (dynamics)
- Lagrangian mechanics, a theoretical formalism
- Hamiltonian mechanics, another theoretical formalism
- Celestial mechanics, the motion of stars, galaxies, etc.
- Astrodynamics, spacecraft navigation, etc.
- Solid mechanics, elasticity, the properties of (semi-)rigid bodies
- Acoustics, sound in solids, fluids, etc.
- Statics, semi-rigid bodies in mechanical equilibrium
- Fluid mechanics, the motion of fluids
- Soil mechanics, mechanical behavior of soils
- Continuum mechanics, mechanics of continua (both solid and fluid)
- Hydraulics, fluids in equilibrium
- Applied / Engineering mechanics
- Biomechanics, solids, fluids, etc. in biology
- Statistical mechanics, large assemblies of particles
- Relativistic or Einsteinian mechanics, universal gravitation

### Quantum mechanics

The following are categorized as being part of Quantum mechanics:

- Particle physics, the motion, structure, and reactions of particles
- Nuclear physics, the motion, structure, and reactions of nuclei
- Condensed matter physics, quantum gases, solids, liquids, etc.
- Quantum statistical mechanics, large assemblies of particles

## Professional organizations

- Applied Mechanics Division, American Society of Mechanical Engineers
- Fluid Dynamics Division, American Physical Society

## See also

## External links

- iMechanica: the web of mechanics and mechanicians
- Mechanics Blog by a Purdue University Professor
- The Mechanics program at Virginia Tech
- Physclips: Mechanics with animations and video clips from the University of New South Wales
- U.S. National Committee on Theoretical and Applied Mechanics

bn:বলবিদ্যা bg:Механика ca:Mecànica cs:Mechanika da:Mekanik de:Mechanik et:Mehaanika el:Μηχανική (φυσική) eo:Mekaniko gl:Mecánica ko:역학 io:Mekaniko id:Mekanika it:Meccanica lv:Mehānika lb:Mechanik lt:Mechanika mk:Механика nl:Mechanica no:Mekanikk sk:Mechanika sl:Mehanika sr:Механика ta:விசையியல் uk:Механіка yi:מעכאניק