Hypoxia (environmental)

Jump to: navigation, search
Pollution
v  d  e
Air pollution
Acid rainAir Quality IndexAtmospheric dispersion modelingChlorofluorocarbonGlobal dimmingGlobal warmingHazeIndoor air qualityOzone depletionParticulateSmog
Water pollution
EutrophicationHypoxiaMarine pollutionOcean acidificationOil spillShip pollutionSurface runoffThermal pollutionWastewaterWaterborne diseasesWater qualityWater stagnation
Soil contamination
BioremediationHerbicidePesticideSoil Guideline Values (SGVs)
Radioactive contamination
Actinides in the environmentEnvironmental radioactivityFission productNuclear falloutPlutonium in the environmentRadiation poisoningRadium in the environmentUranium in the environment
Other types of pollution
Invasive speciesLight pollutionNoise pollutionRadio spectrum pollutionVisual pollution
Inter-government treaties
Montreal ProtocolNitrogen Oxide ProtocolKyoto ProtocolCLRTAP
Major organizations
DEFRAEPAGlobal Atmosphere WatchGreenpeaceNational Ambient Air Quality Standards
Related topics
Environmental ScienceNatural environment
For other uses of the term "hypoxia", see hypoxia.

Hypoxia or oxygen depletion is a phenomenon that occurs in aquatic environments as dissolved oxygen (DO; molecular oxygen dissolved in the water) becomes reduced in concentration to a point detrimental to aquatic organisms living in the system. Dissolved oxygen is typically expressed as a percentage of the oxygen that would dissolve in the water at the prevailing temperature and salinity (both of which affect the solubility of oxygen in water; see oxygen saturation and underwater). An aquatic system lacking dissolved oxygen (0% saturation) is termed anaerobic, reducing, or anoxic; a system with low DO concentration—in the range between 1 and 30% DO saturation—is called hypoxic. Most fish cannot live below 30% DO saturation. A "healthy" aquatic environment should seldom experience DO less than 80%.

Causes of hypoxia

File:Oxygendepletion1.gif
Decline of oxygen saturation to anoxia, measured during the night in Kiel Fjord, Germany. Depth = 5 m

Oxygen depletion could be the result of a number of factors including natural ones, but is of most concern as a consequence of pollution and as an outcome of a process known as eutrophication in which plant nutrients enter a river, lake, or ocean, phytoplankton blooms are encouraged. While phytoplankton, through photosynthesis, will raise DO saturation during daylight hours, the dense population of a bloom reduces DO saturation during the night. When phytoplankton cells die, they sink towards the bottom and are decomposed by bacteria, a process that further reduces DO in the water column. If oxygen depletion progresses to hypoxia, fish kills can occur and invertebrates like worms and clams on the bottom may be killed as well.

File:Fishkillk.jpg
Still frame from an underwater video of the sea floor. The floor is covered with crabs, fish, and clams apparently dead or dying from oxygen depletion.

Natural occurrences of hypoxia have been observed. Water flowing from a river into the sea is less dense than salt water. When this water does not mix with the underlying saline water, the oxygen concentration in the bottom layer may become low enough for hypoxia to occur. Hypoxia is particularly problematic in shallow waters of semi-enclosed bodies of water like the Waddenzee or the Gulf of Mexico where land runoff is substantial. In these areas, a so-called "dead zone" can be created.

Hypoxia may also be the explanation for periodic phenomena such as the Mobile Bay jubilee, where aquatic life suddenly rushes to the shallows, perhaps trying to escape oxygen-depleted water. Recent widespread shellfish kills near the coasts of Oregon and Washington are also blamed on cyclic dead zone ecology. [1]

Solutions

To combat hypoxia, it is essential to reduce the amount of land-derived nutrients reaching rivers in runoff. Defensively this can be done by improving sewage treatment and by reducing the amount of fertilizers leaching into the rivers. Offensively this can be done by restoring natural environments along a river; marshes are particularly effective in reducing the amount of phosphorus and nitrogen (nutrients) in water.

File:Oxygen depletion.png
Graphs of oxygen and salinity levels at Kiel Fjord in September 1998.

In a very short time the oxygen saturation can drop to zero when offshore blowing winds drive surface water out and anoxic depthwater rises up. At the same time a decline in temperature and a rise in salinity is observed (from the longterm ecological observatory in the seas at Kiel Fjord, Germany). New approaches of long-term monitoring of oxygen regime in the ocean observe online the behavior of fish and zooplankton, which changes drastically under reduced oxygen saturations (ecoSCOPE) and already at very low levels of water pollution.

Bog chemistry

In certain northern European sphagnum acidic bogs, a condition of hypoxia arises that prevents tissue decay by impeding micro-organisms in the soil and groundwater. Remarkable preservation of human mummies has occurred in some cases such as the discovery of Haraldskær Woman and Tollund Man in Jutland, Denmark and Lindow man in Cheshire, England.

References

  1. oregonstate.edu – Dead Zone Causing a Wave of Death Off Oregon Coast (8/9/2006)
  • Kils, U., U. Waller, and P. Fischer. 1989. The Fish Kill of the Autumn 1988 in Kiel Bay. International Council for the Exploration of the sea C M 1989/L:14
  • Fischer P. and U. Kils. 1990. In situ Investigations on Respiration and Behaviour of Stickleback Gasterosteus aculeatus and the Eelpout Zoaraes viviparus During Low Oxygen Stress. International Council for the Exploration of the Sea C M 1990/F:23
  • Fischer P., K. Rademacher, and U. Kils. 1992. In situ investigations on the respiration and behaviour of the eelpout Zoarces viviparus under short term hypoxia. Mar Ecol Prog Ser 88: 181-184


See also

External links

da:Iltsvind de:Hypoxie (Ökologie) nl:Hypoxie (water) fi:Anoksia


Linked-in.jpg