Angiostrongyliasis laboratory findings

Jump to navigation Jump to search

Angiostrongyliasis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Angiostrongyliasis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Angiostrongyliasis laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Angiostrongyliasis laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Angiostrongyliasis laboratory findings

CDC on Angiostrongyliasis laboratory findings

Angiostrongyliasis laboratory findings in the news

Blogs on Angiostrongyliasis laboratory findings

Directions to Hospitals Treating Angiostrongyliasis

Risk calculators and risk factors for Angiostrongyliasis laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Laboratory Findings

The diagnosis of disease caused by Angiostrongylus cantonensis infestation is often difficult and relies heavily on the history of a likely ingestion of a commonly infested host and the presence of typical features of the disease. The presumptive diagnosis is particularly strong when eospinophilic meningoencephalitis can be confirmed. The diagnosis of Eosinophilic Meningitis can be arrived at through detection of elevated cranial pressure and increased numbers of eosinophils (>10 eosiniphils/μL in the CSF or at least 10% eosiniphils in the total CSF leukocyte count). The diagnosis of the cause of eosinophilic meningitis and the presence of A. cantonensis is remarkably more difficult. A spinal tap, or a sample of CSF, must be taken to search for A. cantonensis worms or larvae. A. cantonensis is undetectable in the CSF of more than half of the infected individuals. Current methods of detecting specific antigens associated with A. cantonensis are also unreliable. Consequently, alternative approaches to detect antigen-antibody reactions are being explored, such as Immuno-PCR.

Lumbar puncture

Lumbar puncture should always be done is cases of suspected meningitis. In cases of eosiniphilc meningitis it will rarely produce worms even when they are present in the CSF, because they tend to cling to the end of nerves. Larvae are present in the CSF in only 1.9-10% of cases. However, as a case of eosiniphilic meningitis progresses, intracranial pressure and eosiniphil counts should rise. Increased levels of eosinophils in the CSF is a trademark of the eosiniphilic meningitis.

Brain imaging

Brain lesions, with invasion of both gray and white matter, can be seen on a CT or MRI. However MRI findings tend to be inconclusive, and usually include nonspecific lesions and ventricular enlargement. Sometimes a hemorrhage, probably produced by migrating worms, is present and of diagnostic value.

Serology

In patients with elevated eosiniphils, serology can be used to confirm a diagnosis of Angiostrongylias rather than infection with another parasite. There are a number of immunoassays that can aid in diagnosis, however serologic testing is available in few labs in the endemic area, and is frequently too non-specific. Some cross reactivity has been reported between A. cantonensis and trichinosis, making diagnosis less specific.

The most definitive diagnosis always arises from the identification of larvae found in the CSF or eye, however due to this rarity a clinical diagnosis based on the above tests is most likely.

References