AMFR

Jump to: navigation, search

Template:Infobox gene Autocrine motility factor receptor, isoform 2 is a protein that in humans is encoded by the AMFR gene.[1][2]


Autocrine motility factor is a tumor motility-stimulating protein secreted by tumor cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. The receptor, which shows some sequence similarity to tumor protein p53, is localized to the leading and trailing edges of carcinoma cells.[2]


Model organisms

Model organisms have been used in the study of AMFR function. A conditional knockout mouse line, called Amfrtm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty six tests were carried out on mutant mice and one significant abnormality was observed: Fewer than expected homozygous mutant mice survived until weaning.[5]

Interactions

AMFR has been shown to interact with Valosin-containing protein.[13][14]

References

  1. Watanabe H, Carmi P, Hogan V, Raz T, Silletti S, Nabi IR, Raz A (Aug 1991). "Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor". J Biol Chem. 266 (20): 13442–8. PMID 1649192. 
  2. 2.0 2.1 "Entrez Gene: AMFR autocrine motility factor receptor". 
  3. "Salmonella infection data for Amfr". Wellcome Trust Sanger Institute. 
  4. "Citrobacter infection data for Amfr". Wellcome Trust Sanger Institute. 
  5. 5.0 5.1 5.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  6. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. "International Knockout Mouse Consortium". 
  8. "Mouse Genome Informatics". 
  9. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163. 
  10. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  11. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  12. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. PMC 3218837Freely accessible. PMID 21722353. doi:10.1186/gb-2011-12-6-224. 
  13. Zhong, Xiaoyan; Shen Yuxian; Ballar Petek; Apostolou Andria; Agami Reuven; Fang Shengyun (Oct 2004). "AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation". J. Biol. Chem. United States. 279 (44): 45676–84. ISSN 0021-9258. PMID 15331598. doi:10.1074/jbc.M409034200. 
  14. Lee, Joon No; Zhang Xiangyu; Feramisco Jamison D; Gong Yi; Ye Jin (Nov 2008). "Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step". J. Biol. Chem. United States. 283 (48): 33772–83. ISSN 0021-9258. PMC 2586246Freely accessible. PMID 18835813. doi:10.1074/jbc.M806108200. 

External links

Further reading


Linked-in.jpg