Nucleohyaloplasm: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
No edit summary
Line 3: Line 3:
'''Nucleohyaloplasm''' is the [[cytosol]] within the [[nucleus]], without the [[microfilaments]] and the [[microtubules]]. This liquid part contains enzymes and intermediate metabolites. Many substances such as nucleotides (necessary for purposes such as the replication of DNA and production of mRNA) and enzymes (which direct activities that take place in the nucleus) are dissolved in the nucleohyaloplasm.
'''Nucleohyaloplasm''' is the [[cytosol]] within the [[nucleus]], without the [[microfilaments]] and the [[microtubules]]. This liquid part contains enzymes and intermediate metabolites. Many substances such as nucleotides (necessary for purposes such as the replication of DNA and production of mRNA) and enzymes (which direct activities that take place in the nucleus) are dissolved in the nucleohyaloplasm.


Small particles (< 30 kDa) are able to pass through the nuclear pore complex by passive diffusion. Larger particles are also able to pass through the large diameter of the pore but at almost negligible rates.<ref name=Campbell1987>{{cite book |last=Campbell |first=Neil A. |authorlink=Neil Campbell (scientist) |title=Biology |year=1987 |isbn=0-8053-1840-2 |pages=795}}</ref> The average mass range for amino acids: 75.06714 - 204.22844 Da. The lateral speed of biological molecules in passive diffusion in water is on the order of 500 - 50 nm/sec. But in cytosol such as the nucleohyaloplasm: ~120-10 nm/sec due to crowding and collisions with large molecules. The average mass range for amino acids: 75.06714 - 204.22844 Da. The lateral speed of biological molecules in passive diffusion in water is on the order of 500 - 50 nm/sec. But in cytosol such as the nucleohyaloplasm: ~120-10 nm/sec due to crowding and collisions with large molecules.
Small particles (< 30 kDa) are able to pass through the nuclear pore complex by passive diffusion. Larger particles are also able to pass through the large diameter of the pore but at almost negligible rates.<ref name=Campbell1987>{{cite book |last=Campbell |first=Neil A. |authorlink=Neil Campbell (scientist) |title=Biology |year=1987 |isbn=0-8053-1840-2 |pages=795}}</ref> The average mass range for amino acids: 75.06714 - 204.22844 Da. The lateral speed of biological molecules in passive diffusion in water is on the order of 500 - 50 nm/sec. But in cytosol such as the nucleohyaloplasm: ~120-10 nm/sec due to crowding and collisions with large molecules.


=References=
=References=

Revision as of 16:55, 19 February 2009

Template:Mergeto Nucleohyaloplasm is the cytosol within the nucleus, without the microfilaments and the microtubules. This liquid part contains enzymes and intermediate metabolites. Many substances such as nucleotides (necessary for purposes such as the replication of DNA and production of mRNA) and enzymes (which direct activities that take place in the nucleus) are dissolved in the nucleohyaloplasm.

Small particles (< 30 kDa) are able to pass through the nuclear pore complex by passive diffusion. Larger particles are also able to pass through the large diameter of the pore but at almost negligible rates.[1] The average mass range for amino acids: 75.06714 - 204.22844 Da. The lateral speed of biological molecules in passive diffusion in water is on the order of 500 - 50 nm/sec. But in cytosol such as the nucleohyaloplasm: ~120-10 nm/sec due to crowding and collisions with large molecules.

References

  1. Campbell, Neil A. (1987). Biology. p. 795. ISBN 0-8053-1840-2.