Myasthenia gravis: Difference between revisions

Jump to navigation Jump to search
Line 18: Line 18:


==Diagnosis==
==Diagnosis==
Myasthenia can be a difficult diagnosis, as the symptoms can be subtle and hard to distinguish from both normal variants and other neurological disorders.<ref name="Scherer">{{cite journal | author=Scherer K, Bedlack RS, Simel DL. | title=Does this patient have myasthenia gravis? | journal=[[JAMA]] | year=2005 | volume=293 | pages=1906–14 | id=PMID 15840866}}</ref> A thorough [[physical examination]] can reveal easy fatiguability, with the weakness improving after rest and worsening again on repeat of the exertion testing. Applying ice to weak muscle groups characteristically leads to improvement in strength of those muscles. Additional tests are often performed, as mentioned below. Furthermore, a good response to medication can also be considered a sign of autoimmune pathology.


===Physical examination===
Muscle fatigability can be tested for many muscles. A thorough investigation includes:
* looking upward and sidewards for 30 seconds: [[ptosis (eyelid)|ptosis]] and [[diplopia]].
* looking at the feet while lying on the back for 60 seconds
* keeping the arms stretched forward for 60 seconds
* 10 deep knee bends
* walking 30 steps on both the toes and the heels
* 5 situps, lying down and sitting up completely


===Blood tests===
===Blood tests===

Revision as of 19:03, 9 July 2013

Myasthenia gravis
ICD-10 G70.0
ICD-9 358.0
OMIM 254200
DiseasesDB 8460
MedlinePlus 000712
MeSH D009157

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Myasthenia gravis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Myasthenia Gravis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myasthenia gravis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myasthenia gravis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myasthenia gravis

CDC on Myasthenia gravis

Myasthenia gravis in the news

Blogs on Myasthenia gravis

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Myasthenia gravis



Diagnosis

Blood tests

If the diagnosis is suspected, serology can be performed in a blood test to identify antibodies against the acetylcholine receptor. The test has a reasonable sensitivity of 80–96%, but in MG limited to the eye muscles (ocular myasthenia) the test may be negative in up to 50% of the cases. About half of the patients without antibodies against the acetylcholine receptor have antibodies against the MuSK protein. In specific situations (decreased reflexes which increase on facilitation, co-existing autonomic features, suspected presence of neoplasm, presence of increment or facilitation on repetitive EMG testing) testing is performed for Lambert-Eaton syndrome, in which other antibodies (against a voltage-gated calcium channel) can be found.

Neurophysiology

Muscle fibers of patients with MG are easily fatigued, and thus do not respond as well as muscles in healthy individuals to repeated stimulation. By repeatedly stimulating a muscle with electrical impulses, the fatiguability of the muscle can be measured. This is called the repetitive nerve stimulation test. In single fiber electromyography, which is considered to be the most sensitive (although not the most specific) test for MG, a thin needle electrode is inserted into a muscle to record the electric potentials of individual muscle fibers. By finding two muscle fibers belonging to the same motor unit and measuring the temporal variability in their firing patterns (i.e. their 'jitter'), the diagnosis can be made.

Edrophonium test

The "edrophonium test" is infrequently performed to identify MG; its application is limited to the situation when other investigations do not yield a conclusive diagnosis. This test requires the intravenous administration of edrophonium chloride (Tensilon®, Reversol®), a drug that blocks the breakdown of acetylcholine by cholinesterase and temporarily increases the levels of acetylcholine at the neuromuscular junction. In people with myasthenia gravis involving the eye muscles, edrophonium chloride will briefly relieve weakness.

Imaging

A chest X-ray is frequently performed; it may point towards alternative diagnoses (e.g. Lambert-Eaton due to a lung tumor) and comorbidity. It may also identify widening of the mediastinum suggestive of thymoma, but computed tomography (CT) or magnetic resonance imaging (MRI) are more sensitive ways to identify thymomas, and are generally done for this reason.

Pulmonary function test

Spirometry (lung function testing) may be performed to assess respiratory function if there are concerns about a patient's ability to breathe adequately. The vital capacity (VC) may be monitored at intervals in order not to miss a gradual worsening of muscular weakness. Severe myasthenia may cause respiratory failure due to exhaustion of the respiratory muscles.

Pathological findings

Immunofluorescence shows IgG antibodies on the neuromuscular junction. (Note that it is not the antibody which causes myasthenia gravis that fluoresces, but rather a secondary antibody directed against it.) Muscle electron microscopy shows receptor infolding and loss of the tips of the folds, together with widening of the synaptic clefts. Both these techniques are currently used for research rather than diagnostically.

Associations

Myasthenia Gravis is associated with various autoimmune diseases, including:

Seropositive and "double-seronegative" patients often have thymoma or thymic hyperplasia. However, anti-MuSK positive patients do not have evidence of thymus pathology.

Treatment

Treatment is by medication and/or surgery. Medication consists mainly of cholinesterase inhibitors to directly improve muscle function and immunosuppressant drugs to reduce the autoimmune process. Thymectomy is a surgical method to treat MG. For emergency treatment, plasmapheresis or IVIG can be used as a temporary measure to remove antibodies from the blood circulation.

Medication

  • Cholinesterase inhibitors: neostigmine and pyridostigmine can improve muscle function by slowing the natural enzyme cholinesterase that degrades acetylcholine in the motor end plate; the neurotransmitter is therefore around longer to stimulate its receptor. Usually doctors will start with a low dose, eg 3x20mg pyridostigmine, and increase until the desired result is achieved. If taken 30 minutes before a meal, symptoms will be mild during eating. Side effects, like perspiration and diarrhea can be countered by adding atropine. Pyridostigmine is a short-lived drug with a half-life of about 4 hours.

Plasmapheresis and IVIG

If the myasthenia is serious (myasthenic crisis), plasmapheresis is used to remove the putative antibody from the circulation. Similarly, intravenous immunoglobulins (IVIG) are used to bind the circulating antibodies. Both of these treatments have relatively short-lived benefits, typically measured in weeks.

Surgery

Thymectomy, the surgical removal of the thymus, is essential in cases of thymoma in view of the potential neoplastic effects of the tumor. However, the procedure is more controversial in patients who do not show thymic abnormalities. Although some of these patients improve following thymectomy, some patients experience severe exacerbations and the highly controversial concept of "therapeutic thymectomy" for patients with thymus hyperplasia is disputed by many experts and efforts are underway to unequivocally answer this important question.

There are a number of surgical approaches to the removal of the thymus gland: transsternal (through the sternum, or breast bone), transcervical (through a small neck incision), and transthoracic (through one or both sides of the chest). The transsternal approach is most common and uses the same length-wise incision through the sternum (breast bone)used for most open-heart surgery. The transcervical approach is a less invasive procedure that allows for removal of the entire thymus gland through a small neck incision. There has been no difference in success in symptom improvement between the transsternal approach and the minimally invasive transcervical approach.[1]

Thymoma is relatively rare in younger (<40) patients, but paradoxically especially younger patients with generalized MG without thymoma benefit from thymectomy. Of course, resection is also indicated for those with a thymoma, but it is less likely to improve the MG symptoms.

Prognosis

With treatment, patients have a normal life expectancy, except for those with a malignant thymoma (whose lesser life expectancy is on account of the thymoma itself and is otherwise unrelated to the myasthenia). Quality of life can vary depending on the severity and the cause. The drugs used to control MG either diminish in effectiveness over time (cholinesterase inhibitors) or cause severe side effects of their own (immunosupressants). A small percentage (around 10%) of MG patients are found to have tumors in their thymus glands, in which case a thymectomy is a very effective treatment with long-term remission. However, most patients need treatment for the remainder of their lives, and their abilities vary greatly. It should be noted that MG is not usually a progressive disease. The symptoms may come and go, but the symptoms usually do not get worse as the patient ages. For some, the symptoms decrease after a span of 3–5 years.

Epidemiology

Myasthenia gravis occurs in all ethnic groups and both genders. It most commonly affects women under 40 - and people from 50 to 70 years old of either sex, but it has been known to occur at any age. Younger patients rarely have thymoma. The prevalence in the United States is estimated at 20 cases per 100,000 in the United States.[2] Risk factors are the female gender with ages 20 – 40, familial myasthenia gravis, D-penicillamine ingestion (drug induced myasthenia), and having other autoimmune diseases.

Three types of myasthenia symptoms in children can be distinguished:

  1. Neonatal: In 12% of the pregnancies with a mother with MG, she passes the antibodies to the infant through the placenta causing neonatal myasthenia gravis. The symptoms will start in the first two days and disappear within a few weeks after birth. With the mother it is not uncommon for the symptoms to even improve during pregnancy, but they might worsen after labor.
  2. Congenital: Children of a healthy mother can, very rarely, develop myasthenic symptoms beginning at birth. This is called Congenital Myasthenic Syndrome or CMS. Other than Myasthenia gravis, CMS is not caused by an autoimmune process, but due to synaptic malformation, which in turn is caused by genetic mutations. Thus, CMS is a hereditary disease. More than 11 different mutations have been identified and the inheritance pattern is typically autosomal recessive.
  3. Juvenile myasthenia gravis: myasthenia occurring in childhood but after the peripartum period.

The congenital myasthenias cause muscle weakness and fatigability similar to those of MG. The symptoms of CMS usually begin within the first two years of life, although in a few forms patients can develop their first symptoms as late as the seventh decade of life. A diagnosis of CMS is suggested by the following:

  • Onset of symptoms in infancy or childhood.
  • Weakness which increases as muscles tire.
  • A decremental EMG response, on low frequency, of the compound muscle action potential (CMAP).
  • No anti-AChR or MuSK antibodies.
  • No response to immunosuppressant therapy.
  • Family history of symptoms which resemble CMS.

The symptoms of CMS can vary from mild to severe. It is also common for patients with the same form, even members of the same family, to be affected to differing degrees. In most forms of CMS weakness does not progress, and in some forms, the symptoms may diminish as the patient gets older. Only rarely do symptoms of CMS become worse with time.


References

  1. Calhoun R; et al. (1999). "Results of transcervical thymectomy for myasthenia gravis in 100 consecutive patients". Annals of Surgery. 230 (4): 555–561. PMID 10522725.
  2. "What is Myasthenia Gravis (MG)?". Myasthenia Gravis Foundation of America.

External links

Template:PNS diseases of the nervous system


Template:WH Template:WS