IFITM1: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Interferon-induced transmembrane protein 1''' is a [[protein]] that in humans is encoded by the ''IFITM1'' [[gene]].<ref name="pmid7559564">{{cite journal |vauthors=Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, Huez GA, Wathelet MG | title = Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth | journal = J Biol Chem | volume = 270 | issue = 40 | pages = 23860–6 |date=Nov 1995 | pmid = 7559564 | pmc =  | doi =10.1074/jbc.270.40.23860  }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: IFITM1 interferon induced transmembrane protein 1 (9-27)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8519| accessdate = }}</ref> IFITM1 has also recently been designated '''CD225''' ([[cluster of differentiation]] 225). This protein has several additional names: fragilis (human homolog of the mouse protein), IFI17 [interferon-induced protein 17], 9-27 [Interferon-inducible protein 9-27] and Leu13.
| update_page = yes
 
| require_manual_inspection = no
IFITM1 is a member of the IFITM family (Interferon-induced transmembrane protein) which is encoded by IFITM genes. The human IFITM genes locate on chromosome 11 and have four members: IFITM1, IFITM2, IFITM3 and IFITM5.<ref name="pmid22537233">{{cite journal |vauthors=Hickford D, Frankenberg S, Shaw G, Renfree MB | title = Evolution of vertebrate interferon inducible transmembrane proteins | journal = BMC Genomics | volume = 13 | issue = | pages = 155 | year = 2012 | pmid = 22537233 | pmc = 3424830 | doi = 10.1186/1471-2164-13-155 }}</ref> While the mouse Ifitm genes locate on chromosome 7 and 16 and have six members: Ifitm1, [[Ifitm2]], [[Ifitm3]], [[Ifitm5]], [[Ifitm6]] and [[Ifitm7]].
| update_protein_box = yes
 
| update_summary = yes
== Molecular biology ==
| update_citations = yes
 
}}
The IFITM1 gene is located on the Watson (plus) strand of the short arm of [[chromosome 11]] (11p15.5) and is 3,956 bases in length. The encoded protein has  125 [[amino acid]]s (molecular weight 13.964 [[Dalton (unit)|kDa]]).
 
It is an intrinsic membrane protein and is predicted to cross the membrane several times.
 
==Structure and function==
IFITM proteins have a short N-terminal and C-terminal domain, two transmembrane domains (TM1 and TM2) and a short cytoplasmic domain. The first transmembrane domain (TM1) and the cytoplasmic domain are conserved among different IFITM proteins in human and mouse.<ref name="pmid20601941">{{cite journal |vauthors=Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, López CB, Hang HC | title = Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3 | journal = Nat. Chem. Biol. | volume = 6 | issue = 8 | pages = 610–4 |date=August 2010 | pmid = 20601941 | pmc = 2928251 | doi = 10.1038/nchembio.405 }}</ref> In the absence of interferon stimulation, IFITM proteins can express broadly in tissues and cell lines. In human, ITITM1, IFITM2 and IFITM3 are able to express in different tissues and cells while the expression of IFITM5 is limited to osteoblasts.<ref name="pmid16326387">{{cite journal |vauthors=Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP | title = IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion | journal = Dev. Cell | volume = 9 | issue = 6 | pages = 745–56 |date=December 2005 | pmid = 16326387 | doi = 10.1016/j.devcel.2005.10.010 }}</ref> The type I and II interferon induce IFITM proteins expression significantly. IFITM proteins are involved in the physiological process of immune response signaling, germ cell maturation and development.<ref name="pmid1906403">{{cite journal |vauthors=Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM | title = Molecular analysis of a human interferon-inducible gene family | journal = Eur. J. Biochem. | volume = 199 | issue = 2 | pages = 417–23 |date=July 1991 | pmid = 1906403 | doi = 10.1111/j.1432-1033.1991.tb16139.x| url = }}</ref>
 
== Biochemistry ==
 
The gene is induced by [[interferon]] and the protein forms part of the signaling pathway.
 
== Antiviral function of IFITM proteins ==
 
By using genomic screening for cellular factors which are involved in influenza A virus life cycle such as entry, replication and release, IFITM proteins have been identified as antiviral restriction factors for influenza A virus replication. Knockout IFITM3 increased influenza virus A replication and overexpression IFITM3 inhibits influenza virus A replication.<ref name="pmid22046135">{{cite journal |vauthors=Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL | title = IFITM3 inhibits influenza A virus infection by preventing cytosolic entry | journal = PLoS Pathog. | volume = 7 | issue = 10 | pages = e1002337 |date=October 2011 | pmid = 22046135 | pmc = 3203188 | doi = 10.1371/journal.ppat.1002337 }}</ref> In addition to replication competent influenza A virus, IFITM proteins were able to inhibit retrovirus based psedotyped influenza A virus, indicating that IFITM protein inhibit influenza A virus at the early step of life cycle, may occur in the entry and fusion steps.


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
IFITM proteins also are able to inhibit several other enveloped viruses infection that belong to different virus families. These virus include flaviviruses (dengue virus and West Nile virus), filoviruses (Marburg virus and Ebola virus) coronaviruses (SARS coronavirus) and lentivirus (Human immunodeficiency virus).<ref name="pmid20064371">{{cite journal |vauthors=Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ | title = The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus | journal = Cell | volume = 139 | issue = 7 | pages = 1243–54 |date=December 2009 | pmid = 20064371 | pmc = 2824905 | doi = 10.1016/j.cell.2009.12.017 }}</ref> However, IFITM proteins did not affect alphaviruses, arenaviruses and murine leukaemia virus infection.
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Interferon induced transmembrane protein 1 (9-27)
| HGNCid = 5412
| Symbol = IFITM1
| AltSymbols =; 9-27; CD225; IFI17; LEU13
| OMIM = 604456
| ECnumber = 
| Homologene = 74501
| MGIid = 
| GeneAtlas_image1 = PBB_GE_IFITM1_214022_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_IFITM1_201601_x_at_tn.png
| Function = {{GNF_GO|id=GO:0005057 |text = receptor signaling protein activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0000074 |text = regulation of progression through cell cycle}} {{GNF_GO|id=GO:0006955 |text = immune response}} {{GNF_GO|id=GO:0007166 |text = cell surface receptor linked signal transduction}} {{GNF_GO|id=GO:0008285 |text = negative regulation of cell proliferation}} {{GNF_GO|id=GO:0009607 |text = response to biotic stimulus}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 8519
    | Hs_Ensembl = ENSG00000185885
    | Hs_RefseqProtein = NP_003632
    | Hs_RefseqmRNA = NM_003641
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 11
    | Hs_GenLoc_start = 303858
    | Hs_GenLoc_end = 305272
    | Hs_Uniprot = P13164
    | Mm_EntrezGene =
    | Mm_Ensembl = 
    | Mm_RefseqmRNA = 
    | Mm_RefseqProtein = 
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 
    | Mm_GenLoc_start = 
    | Mm_GenLoc_end = 
    | Mm_Uniprot = 
  }}
}}
'''Interferon induced transmembrane protein 1 (9-27)''', also known as '''IFITM1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: IFITM1 interferon induced transmembrane protein 1 (9-27)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8519| accessdate = }}</ref> IFITM1 has also recently been designated '''CD225''' ([[cluster of differentiation]] 225).


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
Potential mechanisms.IFITM proteins inhibit viral membrane and cellular endosomal or lyso¬somal vesicles membrane fusion by modify lipid components or fluidity. IFITM proteins blocked the creation of hemifusion between viral membrane and cellular membrane. Furthermore, IFITM proteins reduced membrane fluidity and affected membrane curvature to restrict viral membrane fusion with the cellular membrane.<ref name="pmid23358889">{{cite journal |vauthors=Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL | title = IFITM proteins restrict viral membrane hemifusion | journal = PLoS Pathog. | volume = 9 | issue = 1 | pages = e1003124 |date=January 2013 | pmid = 23358889 | pmc = 3554583 | doi = 10.1371/journal.ppat.1003124 }}</ref> In addition, IFITM3 interacted with the cellular cholesterol regulatory proteins Vesicle-membrane-protein-associated protein A (VAPA) and oxysterol-binding protein (OSBP) to induce intracellular cholesterol accumulation, which in turn blocked viral membrane and vesicles membrane fusion.<ref name="pmid23601107">{{cite journal |vauthors=Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang IC, Farzan M, Jung JU | title = The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral Entry | journal = Cell Host Microbe | volume = 13 | issue = 4 | pages = 452–64 |date=April 2013 | pmid = 23601107 | doi = 10.1016/j.chom.2013.03.006 | pmc=3646482}}</ref>
{{PBB_Summary
| section_title =  
| summary_text =  
}}


==References==
==References==
{{reflist|2}}
{{Reflist|35em}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin|35em}}
{{PBB_Further_reading  
{{PBB_Further_reading
| citations =  
| citations =
*{{cite journal | author=Bradbury LE, Kansas GS, Levy S, ''et al.'' |title=The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. |journal=J. Immunol. |volume=149 |issue= 9 |pages= 2841-50 |year= 1992 |pmid= 1383329 |doi=  }}
*{{cite journal   |vauthors=Bradbury LE, Kansas GS, Levy S, etal |title=The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. |journal=J. Immunol. |volume=149 |issue= 9 |pages= 2841–50 |year= 1992 |pmid= 1383329 |doi=  }}
*{{cite journal  | author=Takahashi S, Doss C, Levy S, Levy R |title=TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. |journal=J. Immunol. |volume=145 |issue= 7 |pages= 2207-13 |year= 1990 |pmid= 2398277 |doi=  }}
*{{cite journal  |vauthors=Takahashi S, Doss C, Levy S, Levy R |title=TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. |journal=J. Immunol. |volume=145 |issue= 7 |pages= 2207–13 |year= 1990 |pmid= 2398277 |doi=  }}
*{{cite journal | author=Reid LE, Brasnett AH, Gilbert CS, ''et al.'' |title=A single DNA response element can confer inducibility by both alpha- and gamma-interferons. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=86 |issue= 3 |pages= 840-4 |year= 1989 |pmid= 2492664 |doi=  }}
*{{cite journal   |vauthors=Reid LE, Brasnett AH, Gilbert CS, etal |title=A single DNA response element can confer inducibility by both alpha- and gamma-interferons. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=86 |issue= 3 |pages= 840–4 |year= 1989 |pmid= 2492664 |doi=10.1073/pnas.86.3.840  | pmc=286573 }}
*{{cite journal  | author=Kelly JM, Gilbert CS, Stark GR, Kerr IM |title=Differential regulation of interferon-induced mRNAs and c-myc mRNA by alpha- and gamma-interferons. |journal=Eur. J. Biochem. |volume=153 |issue= 2 |pages= 367-71 |year= 1986 |pmid= 3935435 |doi=  }}
*{{cite journal  |vauthors=Kelly JM, Gilbert CS, Stark GR, Kerr IM |title=Differential regulation of interferon-induced mRNAs and c-myc mRNA by alpha- and gamma-interferons. |journal=Eur. J. Biochem. |volume=153 |issue= 2 |pages= 367–71 |year= 1986 |pmid= 3935435 |doi=10.1111/j.1432-1033.1985.tb09312.x }}
*{{cite journal | author=Friedman RL, Manly SP, McMahon M, ''et al.'' |title=Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. |journal=Cell |volume=38 |issue= 3 |pages= 745-55 |year= 1984 |pmid= 6548414 |doi= }}
*{{cite journal   |vauthors=Friedman RL, Manly SP, McMahon M, etal |title=Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. |journal=Cell |volume=38 |issue= 3 |pages= 745–55 |year= 1984 |pmid= 6548414 |doi=10.1016/0092-8674(84)90270-8  }}
*{{cite journal  | author=Deblandre GA, Marinx OP, Evans SS, ''et al.'' |title=Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. |journal=J. Biol. Chem. |volume=270 |issue= 40 |pages= 23860-6 |year= 1995 |pmid= 7559564 |doi=  }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal  | author=Constantoulakis P, Campbell M, Felber BK, ''et al.'' |title=Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9-27 gene. |journal=Science |volume=259 |issue= 5099 |pages= 1314-8 |year= 1993 |pmid= 7680491 |doi= }}
*{{cite journal   |vauthors=Kita K, Sugaya S, Zhai L, etal |title=Involvement of LEU13 in interferon-induced refractoriness of human RSa cells to cell killing by X rays. |journal=Radiat. Res. |volume=160 |issue= 3 |pages= 302–8 |year= 2003 |pmid= 12926988 |doi=10.1667/RR3039 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Lehner B, Semple JI, Brown SE, etal |title=Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. |journal=Genomics |volume=83 |issue= 1 |pages= 153–67 |year= 2004 |pmid= 14667819 |doi=10.1016/S0888-7543(03)00235-0 }}
*{{cite journal | author=Kita K, Sugaya S, Zhai L, ''et al.'' |title=Involvement of LEU13 in interferon-induced refractoriness of human RSa cells to cell killing by X rays. |journal=Radiat. Res. |volume=160 |issue= 3 |pages= 302-8 |year= 2003 |pmid= 12926988 |doi=  }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal | author=Lehner B, Semple JI, Brown SE, ''et al.'' |title=Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. |journal=Genomics |volume=83 |issue= 1 |pages= 153-67 |year= 2004 |pmid= 14667819 |doi=  }}
*{{cite journal   |vauthors=Akyerli CB, Beksac M, Holko M, etal |title=Expression of IFITM1 in chronic myeloid leukemia patients. |journal=Leuk. Res. |volume=29 |issue= 3 |pages= 283–6 |year= 2005 |pmid= 15661263 |doi= 10.1016/j.leukres.2004.07.007 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal   |vauthors=Yang Y, Lee JH, Kim KY, etal |title=The interferon-inducible 9-27 gene modulates the susceptibility to natural killer cells and the invasiveness of gastric cancer cells. |journal=Cancer Lett. |volume=221 |issue= 2 |pages= 191–200 |year= 2005 |pmid= 15808405 |doi= 10.1016/j.canlet.2004.08.022 }}
*{{cite journal | author=Akyerli CB, Beksac M, Holko M, ''et al.'' |title=Expression of IFITM1 in chronic myeloid leukemia patients. |journal=Leuk. Res. |volume=29 |issue= 3 |pages= 283-6 |year= 2005 |pmid= 15661263 |doi= 10.1016/j.leukres.2004.07.007 }}
*{{cite journal   |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal | author=Yang Y, Lee JH, Kim KY, ''et al.'' |title=The interferon-inducible 9-27 gene modulates the susceptibility to natural killer cells and the invasiveness of gastric cancer cells. |journal=Cancer Lett. |volume=221 |issue= 2 |pages= 191-200 |year= 2005 |pmid= 15808405 |doi= 10.1016/j.canlet.2004.08.022 }}
*{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
}}
}}
{{refend}}
{{refend}}
Line 81: Line 50:
* {{MeshName|IFITM1+protein,+human}}
* {{MeshName|IFITM1+protein,+human}}


{{membrane-protein-stub}}
{{Clusters of differentiation}}
 
{{NLM content}}
{{NLM content}}
{{Clusters of differentiation}}
 
[[Category:Clusters of differentiation]]
[[Category:Clusters of differentiation]]
{{WikiDoc Sources}}

Revision as of 23:38, 31 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Interferon-induced transmembrane protein 1 is a protein that in humans is encoded by the IFITM1 gene.[1][2] IFITM1 has also recently been designated CD225 (cluster of differentiation 225). This protein has several additional names: fragilis (human homolog of the mouse protein), IFI17 [interferon-induced protein 17], 9-27 [Interferon-inducible protein 9-27] and Leu13.

IFITM1 is a member of the IFITM family (Interferon-induced transmembrane protein) which is encoded by IFITM genes. The human IFITM genes locate on chromosome 11 and have four members: IFITM1, IFITM2, IFITM3 and IFITM5.[3] While the mouse Ifitm genes locate on chromosome 7 and 16 and have six members: Ifitm1, Ifitm2, Ifitm3, Ifitm5, Ifitm6 and Ifitm7.

Molecular biology

The IFITM1 gene is located on the Watson (plus) strand of the short arm of chromosome 11 (11p15.5) and is 3,956 bases in length. The encoded protein has 125 amino acids (molecular weight 13.964 kDa).

It is an intrinsic membrane protein and is predicted to cross the membrane several times.

Structure and function

IFITM proteins have a short N-terminal and C-terminal domain, two transmembrane domains (TM1 and TM2) and a short cytoplasmic domain. The first transmembrane domain (TM1) and the cytoplasmic domain are conserved among different IFITM proteins in human and mouse.[4] In the absence of interferon stimulation, IFITM proteins can express broadly in tissues and cell lines. In human, ITITM1, IFITM2 and IFITM3 are able to express in different tissues and cells while the expression of IFITM5 is limited to osteoblasts.[5] The type I and II interferon induce IFITM proteins expression significantly. IFITM proteins are involved in the physiological process of immune response signaling, germ cell maturation and development.[6]

Biochemistry

The gene is induced by interferon and the protein forms part of the signaling pathway.

Antiviral function of IFITM proteins

By using genomic screening for cellular factors which are involved in influenza A virus life cycle such as entry, replication and release, IFITM proteins have been identified as antiviral restriction factors for influenza A virus replication. Knockout IFITM3 increased influenza virus A replication and overexpression IFITM3 inhibits influenza virus A replication.[7] In addition to replication competent influenza A virus, IFITM proteins were able to inhibit retrovirus based psedotyped influenza A virus, indicating that IFITM protein inhibit influenza A virus at the early step of life cycle, may occur in the entry and fusion steps.

IFITM proteins also are able to inhibit several other enveloped viruses infection that belong to different virus families. These virus include flaviviruses (dengue virus and West Nile virus), filoviruses (Marburg virus and Ebola virus) coronaviruses (SARS coronavirus) and lentivirus (Human immunodeficiency virus).[8] However, IFITM proteins did not affect alphaviruses, arenaviruses and murine leukaemia virus infection.

Potential mechanisms.IFITM proteins inhibit viral membrane and cellular endosomal or lyso¬somal vesicles membrane fusion by modify lipid components or fluidity. IFITM proteins blocked the creation of hemifusion between viral membrane and cellular membrane. Furthermore, IFITM proteins reduced membrane fluidity and affected membrane curvature to restrict viral membrane fusion with the cellular membrane.[9] In addition, IFITM3 interacted with the cellular cholesterol regulatory proteins Vesicle-membrane-protein-associated protein A (VAPA) and oxysterol-binding protein (OSBP) to induce intracellular cholesterol accumulation, which in turn blocked viral membrane and vesicles membrane fusion.[10]

References

  1. Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, Huez GA, Wathelet MG (Nov 1995). "Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth". J Biol Chem. 270 (40): 23860–6. doi:10.1074/jbc.270.40.23860. PMID 7559564.
  2. "Entrez Gene: IFITM1 interferon induced transmembrane protein 1 (9-27)".
  3. Hickford D, Frankenberg S, Shaw G, Renfree MB (2012). "Evolution of vertebrate interferon inducible transmembrane proteins". BMC Genomics. 13: 155. doi:10.1186/1471-2164-13-155. PMC 3424830. PMID 22537233.
  4. Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, López CB, Hang HC (August 2010). "Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3". Nat. Chem. Biol. 6 (8): 610–4. doi:10.1038/nchembio.405. PMC 2928251. PMID 20601941.
  5. Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP (December 2005). "IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion". Dev. Cell. 9 (6): 745–56. doi:10.1016/j.devcel.2005.10.010. PMID 16326387.
  6. Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM (July 1991). "Molecular analysis of a human interferon-inducible gene family". Eur. J. Biochem. 199 (2): 417–23. doi:10.1111/j.1432-1033.1991.tb16139.x. PMID 1906403.
  7. Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL (October 2011). "IFITM3 inhibits influenza A virus infection by preventing cytosolic entry". PLoS Pathog. 7 (10): e1002337. doi:10.1371/journal.ppat.1002337. PMC 3203188. PMID 22046135.
  8. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (December 2009). "The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus". Cell. 139 (7): 1243–54. doi:10.1016/j.cell.2009.12.017. PMC 2824905. PMID 20064371.
  9. Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL (January 2013). "IFITM proteins restrict viral membrane hemifusion". PLoS Pathog. 9 (1): e1003124. doi:10.1371/journal.ppat.1003124. PMC 3554583. PMID 23358889.
  10. Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang IC, Farzan M, Jung JU (April 2013). "The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral Entry". Cell Host Microbe. 13 (4): 452–64. doi:10.1016/j.chom.2013.03.006. PMC 3646482. PMID 23601107.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.