Chikungunya future or investigational therapies: Difference between revisions

Jump to navigation Jump to search
Line 94: Line 94:
|+
|+
! style="background: #4479BA; width: 120px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 120px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|Furin inhibitors}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|2',5'-Oligoadenylate
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|}}
synthetase (OAS3)}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|Cellular IMPDH enzyme}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|}}
! style="background: #4479BA; width: 160px;" | {{fontcolor|#FFF|Viperin}}
 
|-
|-
| style="padding: 5px 5px; background: #DCDCDC;" |
| style="padding: 5px 5px; background: #DCDCDC;" |Assays
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |In vitro (myoblast cells)
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Human epithelial HeLa cell lines
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |In vitro (vero cells)
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |In vivo (monocytes)
| style="padding: 5px 5px; background: #F5F5F5;" |
|-
|-
| style="padding: 5px 5px; background: #DCDCDC;" |
| style="padding: 5px 5px; background: #DCDCDC;" |Target/effectors
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Intracellular furin-mediated cleavage of viral envelope glycoproteins: the E2E3 or p62 precursor
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Affects CHIKV replication through a RNase L-dependent pathway
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Depletion of intracellular guanosine pool
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Endoplasmic reticulum
| style="padding: 5px 5px; background: #F5F5F5;" |
|-
|-
| style="padding: 5px 5px; background: #DCDCDC;" |
| style="padding: 5px 5px; background: #DCDCDC;" |Advantages
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Able to induce a stronger inhibition of viral infection.
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Ability of OAS3 to inhibit alphavirus growth may be important for the development of antiviral molecules against CHIKV
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |CHIKV utilizes IMPDH activity for its growth and multiplication which is a potential and effective target to
| style="padding: 5px 5px; background: #F5F5F5;" |
prevent its infection
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Critical antiviral host protein that controls CHIKV infection and provides a preclinical basis for the design of effective control strategies against CHIKV.
|-
|-
| style="padding: 5px 5px; background: #DCDCDC;" |
| style="padding: 5px 5px; background: #DCDCDC;" |Disadvantages
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Not tested in ''invivo'' system
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Cannot rule out the possibility that OAS3-mediated inhibition of CHIKV was also due to a block early in virus life cycle, for example, viral entry and uncoating of virus particles
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |It would be useful to explore similar findings by targeting IMPDH in case of other alphaviruses which are more lethal than chikungunya like Sindbis virus, Semliki forest virus, and so forth
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |Large gaps in our understanding of the precise mechanisms at play for viperin to exert such a wide variety of roles within the cell
| style="padding: 5px 5px; background: #F5F5F5;" |
|-
|-
| style="padding: 5px 5px; background: #FFF;" colspan="6"| <SMALL>Table adapted from Antiviral Perspectives for Chikungunya Virus<ref name="ParasharCherian2014">{{cite journal|last1=Parashar|first1=Deepti|last2=Cherian|first2=Sarah|title=Antiviral Perspectives for Chikungunya Virus|journal=BioMed Research International|volume=2014|year=2014|pages=1–11|issn=2314-6133|doi=10.1155/2014/631642}}</ref></SMALL>
| style="padding: 5px 5px; background: #FFF;" colspan="6"| <SMALL>Table adapted from Antiviral Perspectives for Chikungunya Virus<ref name="ParasharCherian2014">{{cite journal|last1=Parashar|first1=Deepti|last2=Cherian|first2=Sarah|title=Antiviral Perspectives for Chikungunya Virus|journal=BioMed Research International|volume=2014|year=2014|pages=1–11|issn=2314-6133|doi=10.1155/2014/631642}}</ref></SMALL>

Revision as of 19:42, 18 June 2014

Chikungunya Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Chikungunya from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Chikungunya future or investigational therapies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Chikungunya future or investigational therapies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chikungunya future or investigational therapies

CDC on Chikungunya future or investigational therapies

Chikungunya future or investigational therapies in the news

Blogs on Chikungunya future or investigational therapies

Directions to Hospitals Treating Chikungunya

Risk calculators and risk factors for Chikungunya future or investigational therapies

Overview

Major Tested Anti-Chikungunya Chemical Compounds

Chloroquine[1][2] Ribavirin[3] 6-Azauridine[4] Arbidol[5] Harringtonine[6]
Assay type In vitro (vero cells) Human In vitro (vero cells) In vitro (vero and primary human fibroblast cells) In vitro (BHK21 cells)
Hypothesized target Disrupted endosome-mediated Chikungunya internalization, possibly through the prevention of endosomal acidification. Can interact with the intracellular viral RNA production. Inhibition of orotidine monophosphate decarboxylase, an enzyme involved in the de novo biosynthesis of pyrimidine, cytidine, and thymidine. Inhibition of virus mediated fusion and blocking of the viral entry into the target cells through inhibition of glycoprotein conformational changes that are essential for the fusion process. Affects Chikungunya RNA production inside the infected cell as well as viral protein expression such as the nsP3 and the E2 proteins.
Advantages In vitro study proved that it blocks the production of proinflammatory cytokines and the proliferation of

monocytes, macrophages, and lymphocytes

Faster resolution of joint and soft tissue manifestations. Showed a significant inhibition of Chikungunya at a low concentration. Well-tolerated with minimal side effects Minimal cytotoxicity
Disadvantages In vivo study required. Involvement of a small number of patients and lack of planning as randomly distributed patients were not

compared with a placebo group.

The antiviral activity has been difficult to replicate in vivo. Not tested in in vivo system. Not tested in in vivo system.
Table adapted from Antiviral Perspectives for Chikungunya Virus[7]

Major Cellular Inhibitors Against Chikungunya Virus

Furin inhibitors 2',5'-Oligoadenylate

synthetase (OAS3)

Cellular IMPDH enzyme Viperin
Assays In vitro (myoblast cells) Human epithelial HeLa cell lines In vitro (vero cells) In vivo (monocytes)
Target/effectors Intracellular furin-mediated cleavage of viral envelope glycoproteins: the E2E3 or p62 precursor Affects CHIKV replication through a RNase L-dependent pathway Depletion of intracellular guanosine pool Endoplasmic reticulum
Advantages Able to induce a stronger inhibition of viral infection. Ability of OAS3 to inhibit alphavirus growth may be important for the development of antiviral molecules against CHIKV CHIKV utilizes IMPDH activity for its growth and multiplication which is a potential and effective target to

prevent its infection

Critical antiviral host protein that controls CHIKV infection and provides a preclinical basis for the design of effective control strategies against CHIKV.
Disadvantages Not tested in invivo system Cannot rule out the possibility that OAS3-mediated inhibition of CHIKV was also due to a block early in virus life cycle, for example, viral entry and uncoating of virus particles It would be useful to explore similar findings by targeting IMPDH in case of other alphaviruses which are more lethal than chikungunya like Sindbis virus, Semliki forest virus, and so forth Large gaps in our understanding of the precise mechanisms at play for viperin to exert such a wide variety of roles within the cell
Table adapted from Antiviral Perspectives for Chikungunya Virus[7]

References

  1. Khan, Mohsin; Santhosh, S.R.; Tiwari, Mugdha; Lakshmana Rao, P.V.; Parida, Manmohan (2010). "Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells". Journal of Medical Virology. 82 (5): 817–824. doi:10.1002/jmv.21663. ISSN 0146-6615.
  2. Delogu, Ilenia; de Lamballerie, Xavier (2011). "Chikungunya disease and chloroquine treatment". Journal of Medical Virology. 83 (6): 1058–1059. doi:10.1002/jmv.22019. ISSN 0146-6615.
  3. Rajan Ravichandran & Manju Manian (2008). "Ribavirin therapy for Chikungunya arthritis". Journal of infection in developing countries. 2 (2): 140–142. PMID 19738340.
  4. S. Briolant, D. Garin, N. Scaramozzino, A. Jouan & J. M. Crance (2004). "In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination". Antiviral research. 61 (2): 111–117. PMID 14670584. Unknown parameter |month= ignored (help)
  5. Ilenia Delogu, Boris Pastorino, Cecile Baronti, Antoine Nougairede, Emilie Bonnet & Xavier de Lamballerie (2011). "In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant". Antiviral research. 90 (3): 99–107. doi:10.1016/j.antiviral.2011.03.182. PMID 21440006. Unknown parameter |month= ignored (help)
  6. Parveen Kaur, Meerra Thiruchelvan, Regina Ching Hua Lee, Huixin Chen, Karen Caiyun Chen, Mah Lee Ng & Justin Jang Hann Chu (2013). "Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression". Antimicrobial agents and chemotherapy. 57 (1): 155–167. doi:10.1128/AAC.01467-12. PMID 23275491. Unknown parameter |month= ignored (help)
  7. 7.0 7.1 Parashar, Deepti; Cherian, Sarah (2014). "Antiviral Perspectives for Chikungunya Virus". BioMed Research International. 2014: 1–11. doi:10.1155/2014/631642. ISSN 2314-6133.

Template:WH Template:WS