Revision as of 01:24, 10 December 2018 by imported>Chaya5260(→Function: Added information on the decrease of GRIA1 in the human frontal cortex with age.)
Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes with multiple subunits, each possessing transmembrane regions, and all arranged to form a ligand-gated ion channel. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. The GRIA1 belongs to a family of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Each of the members (GRIA1-4) include flip and flop isoforms generated by alternative RNA splicing. The receptor subunits encoded by each isoform vary in their signal transduction properties. The isoform presented here is the flop isoform. In situ hybridization experiments showed that human GRIA1 mRNA is present in granule and pyramidal cells in the hippocampal formation.[3]
GRIA1 (GluR1) is centrally involved in synaptic plasticity. Expression of the GluR1 gene is significantly reduced in the human frontal cortex with increasing age.[4]
↑Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (June 2004). "Gene regulation and DNA damage in the ageing human brain". Nature. 429 (6994): 883–91. doi:10.1038/nature02661. PMID15190254.
↑Gardoni F, Mauceri D, Fiorentini C, Bellone C, Missale C, Cattabeni F, Di Luca M (November 2003). "CaMKII-dependent phosphorylation regulates SAP97/NR2A interaction". J. Biol. Chem. 278 (45): 44745–52. doi:10.1074/jbc.M303576200. PMID12933808.
↑Leonard AS, Davare MA, Horne MC, Garner CC, Hell JW (July 1998). "SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit". J. Biol. Chem. 273 (31): 19518–24. doi:10.1074/jbc.273.31.19518. PMID9677374.
↑Sans N, Racca C, Petralia RS, Wang YX, McCallum J, Wenthold RJ (October 2001). "Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway". J. Neurosci. 21 (19): 7506–16. PMID11567040.
↑Shen L, Liang F, Walensky LD, Huganir RL (November 2000). "Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association". J. Neurosci. 20 (21): 7932–40. PMID11050113.
↑Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M (January 2003). "Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors". Brain Res. Mol. Brain Res. 110 (1): 27–37. doi:10.1016/s0169-328x(02)00561-2. PMID12573530.
Potier MC, Spillantini MG, Carter NP (1992). "The human glutamate receptor cDNA GluR1: cloning, sequencing, expression and localization to chromosome 5". DNA Seq. 2 (4): 211–8. doi:10.3109/10425179209020805. PMID1320959.
Eastwood SL, Burnet PW, Beckwith J, Kerwin RW, Harrison PJ (1994). "AMPA glutamate receptors and their flip and flop mRNAs in human hippocampus". NeuroReport. 5 (11): 1325–8. doi:10.1097/00001756-199406270-00007. PMID7919190.
Roche KW, Raymond LA, Blackstone C, Huganir RL (1994). "Transmembrane topology of the glutamate receptor subunit GluR6". J. Biol. Chem. 269 (16): 11679–82. PMID8163463.
McLaughlin DP, Cheetham ME, Kerwin RW (1993). "Expression of alternatively-spliced glutamate receptors in human hippocampus". Eur. J. Pharmacol. 244 (1): 89–92. doi:10.1016/0922-4106(93)90062-E. PMID8420792.
Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996). "Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit". Neuron. 16 (6): 1179–88. doi:10.1016/S0896-6273(00)80144-0. PMID8663994.
Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997). "Homer: a protein that selectively binds metabotropic glutamate receptors". Nature. 386 (6622): 284–8. doi:10.1038/386284a0. PMID9069287.
Barria A, Derkach V, Soderling T (1998). "Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor". J. Biol. Chem. 272 (52): 32727–30. doi:10.1074/jbc.272.52.32727. PMID9407043.
Ripellino JA, Neve RL, Howe JR (1998). "Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum". Neuroscience. 82 (2): 485–97. doi:10.1016/S0306-4522(97)00296-0. PMID9466455.
Leonard AS, Davare MA, Horne MC, Garner CC, Hell JW (1998). "SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit". J. Biol. Chem. 273 (31): 19518–24. doi:10.1074/jbc.273.31.19518. PMID9677374.
Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998). "Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins". Neuron. 21 (4): 707–16. doi:10.1016/S0896-6273(00)80588-7. PMID9808458.
Leuschner WD, Hoch W (1999). "Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their n-terminal domains". J. Biol. Chem. 274 (24): 16907–16. doi:10.1074/jbc.274.24.16907. PMID10358037.
Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999). "Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation". Science. 284 (5421): 1811–6. doi:10.1126/science.284.5421.1811. PMID10364548.
Rubio ME, Wenthold RJ (1999). "Calnexin and the immunoglobulin binding protein (BiP) coimmunoprecipitate with AMPA receptors". J. Neurochem. 73 (3): 942–8. doi:10.1046/j.1471-4159.1999.0730942.x. PMID10461883.
Stinehelfer S, Vruwink M, Burette A (2000). "Immunolocalization of mGluR1alpha in specific populations of local circuit neurons in the cerebral cortex". Brain Res. 861 (1): 37–44. doi:10.1016/S0006-8993(00)01952-1. PMID10751563.