Thrombocytopenia pathophysiology

Revision as of 20:31, 17 June 2016 by Anthony Gallo (talk | contribs) (Categories)
Jump to navigation Jump to search

Thrombocytopenia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thrombocytopenia from other Diseases

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thrombocytopenia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thrombocytopenia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thrombocytopenia pathophysiology

CDC on Thrombocytopenia pathophysiology

Thrombocytopenia pathophysiology in the news

Blogs on Thrombocytopenia pathophysiology

Directions to Hospitals Treating Thrombocytopenia

Risk calculators and risk factors for Thrombocytopenia pathophysiology

Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

Direct myelosuppression

Immunological platelet destruction

  • Drug binds Fab portion of an antibody. The classic example of this mechanism is the quinidine group of drugs. The Fc portion of the antibody molecule is not involved in the binding process.
  • Drug binds to Fc, and drug-antibody complex binds and activates platelets. Heparin induced thrombocytopenia (HIT) is the classic example of this phenomenon. In HIT, the heparin-antibody-platelet factor 4 (PF4) complex binds to Fc receptors on the surface of the platelet. Since Fc portion of the antibody is bound to the platelets, they are not available to the Fc receptors of the reticulo-endothelial cells, so therefore this system cannot destroy platelets as usual. This may explain why severe thrombocytopenia is not a common feature of HIT.

Heparin-induced thrombocytopenia

(HIT or white clot syndrome): this is a rare but serious condition that may occur in a hospitalized population. The most common clinical setting for HIT is in postoperative coronary artery bypass graft recipients, who may receive large quantities of heparin during surgery. HIT typically occurs about a week after exposure to heparin. The heparin-PF4 antibody complex will activate the platelets, and this can often lead to thrombosis. The term HITT, where the last T stands for thrombosis, denotes the concept that heparin-induced thrombocytopenia often is associated with thrombosis.

References

Template:WS Template:WH