Lassa fever pathophysiology

Jump to navigation Jump to search

Lassa fever Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Lassa fever from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lassa fever pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lassa fever pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lassa fever pathophysiology

CDC on Lassa fever pathophysiology

Lassa fever pathophysiology in the news

Blogs on Lassa fever pathophysiology

Directions to Hospitals Treating Lassa fever

Risk calculators and risk factors for Lassa fever pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [2]

Synonyms and keywords: Lassa hemorrhagic fever; LHF

Overview

Lassa fever may be transmitted from either infected animals (typically rodents) or humans following exposure to body fluids and excretions/secretions from the respiratory tract or GI tract. Following transmission, Lassa virus infects the endothelium and replicates intracellularly using an L-polymerase enzyme and nucleocapsid protein NP, which synthesize ribonucleoprotein (RNP) that produces mRNA and antigenomic RNA required for transcription. NP protein helps the virus evade the host immune system. Following transcription, vascular dysfunction ensues, resulting in the development of clinical manifestations of the disease. Although all organs may potentially be infected, the liver is a common target organ, and hepatitis/hepatic necrosis is typical following Lassa fever infection.

Transmission

Animal to Human

  • Infection in humans typically occurs via exposure to animal (typically rodent) excrement through the respiratory or gastrointestinal tracts.
  • Inhalation of tiny particles of infected aerosol is thought to be the most significant means of exposure, but transmission through direct exposure of infection to skin wounds or mucous membranes.
  • Handling of dead infected animals has also been associated with the transmission of Lassa virus.

Human to Human

  • Lassa virus may be transmitted following exposure to blood, tissue, secretions (including breast milk), or excretions of an infected individual.
  • The virus cannot be transmitted without the exchange of body fluids.

Cellular Pathogenesis

Host Cell Entry

RNA Synthesis

  • Intracellular RNA synthesis is initiated within an L-polymerase enzyme, which utilizes viral RNA templates and nucleocapsid protein NP to synthesize viral ribonucleoprotein (RNP). Once synthesized, RNP is transmitted to the host cell cytoplasm, and transcription of mRNA and antigenomic RNA (agRNA).[2]

Host Immune Response

  • Lassa fever evades the host immune system by production of NP protein, which has an exonuclease activity and causes the inhibition of host type I IFN signaling.[3]
  • Endothelial dysfunction results in the release of pro-inflammatory cytokines and cell mediators[2], which in turn cause platelet dysfunction, hepatic necrosis, suppression of cardiac function, and development of Lassa fever-associated clinical manifestations, including facial edema, pleural and pericardial effusions, and hypovolemic shock.
  • Lassa fever may potentially infect all organs, but the liver and auditory sensorineural system are commonly involved.
  • Failure of the host to mount an adequate cellular immune response to control viral dissemination, along with disseminated replication in tissues and absence of neutralizing antibodies, results in host death.[4] Prompt host immune response is critical for host survival, and fatal Lassa fever is often characterized by impaired or delayed cellular immunity[5].

Genetics

  • Replication for Lassa virus is very rapid and demonstrates a temporal control.[6]
  • The initial replication step is transcription of mRNA copies of the negative (minus-sense) genome. This process ensures an adequate supply of viral proteins for subsequent steps of replication, as the NP and L proteins are translated from the mRNA.
  • Following the initial replication step, the positive (plus-sense) genome then synthesizes viral complementary RNA (vcRNA) copies of itself. The vcRNA copies are then used to synthesize more mRNA and to serve as templates for the production of more negative-sense progeny. The mRNA synthesized from vcRNA are then translated to produce GP and Z proteins.
  • This temporal control allows the spike proteins to be produced last, and therefore, delay recognition by the host immune system.

Gross Pathology

Lassa virus commonly involves the liver and results in hepatocellular necrosis and apoptosis. Other organs may be involved, and Lassa fever infection may manifest with the following:[7][8][9]

Microscopic Pathology

Typical features of Lassa fever-associated hepatitis include the following:

  • Acidophilic necrosis
  • Apoptotic changes
  • Ballooning degeneration
  • Pycnotic nuclei
  • Microvascular changes
  • Councilman bodies (intracellular inclusion bodies)

The images below display key features of microscopic pathology of Lassa virus.

References

  1. Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH; et al. (2000). "Genetic diversity among Lassa virus strains". J Virol. 74 (15): 6992–7004. PMC 112216. PMID 10888638.
  2. 2.0 2.1 Yun NE, Walker DH (2012). "Pathogenesis of Lassa fever". Viruses. 4 (10): 2031–48. doi:10.3390/v4102031. PMC 3497040. PMID 23202452.
  3. Martínez-Sobrido L, Zúñiga EI, Rosario D, García-Sastre A, de la Torre JC (2006). "Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus". J Virol. 80 (18): 9192–9. doi:10.1128/JVI.00555-06. PMC 1563941. PMID 16940530.
  4. Flatz L, Rieger T, Merkler D, Bergthaler A, Regen T, Schedensack M; et al. (2010). "T cell-dependence of Lassa fever pathogenesis". PLoS Pathog. 6 (3): e1000836. doi:10.1371/journal.ppat.1000836. PMC 2847900. PMID 20360949.
  5. "The Centers for Disease Control and Prevention".
  6. Lashley FR (2006). "Emerging infectious diseases at the beginning of the 21st century". Online J Issues Nurs. 11 (1): 2. PMID 16629503.
  7. Frame JD, Baldwin JM, Gocke DJ, Troup JM (1970). "Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings". Am J Trop Med Hyg. 19 (4): 670–6. PMID 4246571.
  8. Walker DH, McCormick JB, Johnson KM, Webb PA, Komba-Kono G, Elliott LH; et al. (1982). "Pathologic and virologic study of fatal Lassa fever in man". Am J Pathol. 107 (3): 349–56. PMC 1916239. PMID 7081389.
  9. McCormick JB, Walker DH, King IJ, Webb PA, Elliott LH, Whitfield SG; et al. (1986). "Lassa virus hepatitis: a study of fatal Lassa fever in humans". Am J Trop Med Hyg. 35 (2): 401–7. PMID 3953952.
  10. 10.0 10.1 10.2 10.3 10.4 "Public Health Image Library (PHIL), Centers for Disease Control and Prevention".

Template:WikiDoc Sources