XPO5: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
imported>OAbot
m (Open access bot: add pmc identifier to citation with #oabot.)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Exportin-5''' ('''XPO5''') is a [[protein]] that, in humans, is encoded by the ''XPO5'' [[gene]].<ref name="pmid11777942">{{cite journal | vauthors = Brownawell AM, Macara IG | title = Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins | journal = The Journal of Cell Biology | volume = 156 | issue = 1 | pages = 53–64 | date = Jan 2002 | pmid = 11777942 | pmc = 2173575 | doi = 10.1083/jcb.200110082 }}</ref><ref name="pmid12426392">{{cite journal | vauthors = Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D | title = Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm | journal = The EMBO Journal | volume = 21 | issue = 22 | pages = 6205–15 | date = Nov 2002 | pmid = 12426392 | pmc = 137205 | doi = 10.1093/emboj/cdf613 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: XPO5 exportin 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57510| accessdate = }}</ref> In [[Eukaryote|eukaryotic cells,]] the primary purpose of XPO5 is to export [[MicroRNA|pre-microRNA]] (also known as pre-miRNA) out of the [[Cell nucleus|nucleus]] and into the [[cytoplasm]], for further processing by the [[Dicer]] enzyme.<ref name="yi">{{cite journal | vauthors = Yi R, Qin Y, Macara IG, Cullen BR | title = Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs | journal = Genes & Development | volume = 17 | issue = 24 | pages = 3011–6 | date = Dec 2003 | pmid = 14681208 | doi = 10.1101/gad.1158803 | pmc=305252}}</ref><ref name="wilson">{{cite journal | vauthors = Wilson RC, Doudna JA | title = Molecular mechanisms of RNA interference | journal = Annual Review of Biophysics | volume = 42 | pages = 217–39 | date = 2013 | pmid = 23654304 | doi = 10.1146/annurev-biophys-083012-130404 }}</ref><ref name="siomi">{{cite journal | vauthors = Siomi H, Siomi MC | title = Posttranscriptional regulation of microRNA biogenesis in animals | journal = Molecular Cell | volume = 38 | issue = 3 | pages = 323–32 | date = May 2010 | pmid = 20471939 | doi = 10.1016/j.molcel.2010.03.013 }}</ref><ref name="macias">{{cite journal | vauthors = Macias S, Cordiner RA, Cáceres JF | title = Cellular functions of the microprocessor | journal = Biochemical Society Transactions | volume = 41 | issue = 4 | pages = 838–43 | date = Aug 2013 | pmid = 23863141 | doi = 10.1042/BST20130011 }}</ref> Once in the cytoplasm, the microRNA (also known as miRNA) can act as a gene silencer by regulating [[Translation (biology)|translation]] of [[Messenger RNA|mRNA]]. Although XPO5 is primarily involved in the transport of [[MicroRNA|pre-miRNA]], it has also been reported to transport tRNA.<ref>{{Cite journal|last=Gupta|first=Asmita|date=2016|title=Insights into the Structural Dynamics of Nucleocytoplasmic Transport of tRNA by Exportin-t|url=|journal=Biophysical Journal|volume=110|pages=1264–1279|via=|doi=10.1016/j.bpj.2016.02.015|pmc=4816717}}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
Much research on XPO5 is ongoing. miRNA is a prominent research topic due to its potential use as a therapeutic, with several miRNA-based drugs already in use.<ref>{{Cite journal|last=Christopher|first=Ajay Francis|last2=Kaur|first2=Raman Preet|last3=Kaur|first3=Gunpreet|last4=Kaur|first4=Amandeep|last5=Gupta|first5=Vikas|last6=Bansal|first6=Parveen|date=2016|title=MicroRNA therapeutics: Discovering novel targets and developing specific therapy|journal=Perspectives in Clinical Research|volume=7|issue=2|pages=68–74|doi=10.4103/2229-3485.179431|issn=2229-3485|pmc=4840794|pmid=27141472}}</ref>
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Exportin 5
| HGNCid = 17675
| Symbol = XPO5
| AltSymbols =; FLJ14239; FLJ32057; FLJ45606; KIAA1291
| OMIM = 607845
| ECnumber =
| Homologene = 69316
| MGIid = 1913789
| GeneAtlas_image1 = PBB_GE_XPO5_gnf1h05645_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000049 |text = tRNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008565 |text = protein transporter activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006611 |text = protein export from nucleus}} {{GNF_GO|id=GO:0015031 |text = protein transport}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 57510
    | Hs_Ensembl = ENSG00000124571
    | Hs_RefseqProtein = NP_065801
    | Hs_RefseqmRNA = NM_020750
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 6
    | Hs_GenLoc_start = 43598053
    | Hs_GenLoc_end = 43651729
    | Hs_Uniprot = Q9HAV4
    | Mm_EntrezGene = 72322
    | Mm_Ensembl = ENSMUSG00000067150
    | Mm_RefseqmRNA = NM_028198
    | Mm_RefseqProtein = NP_082474
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 17
    | Mm_GenLoc_start = 45666363
    | Mm_GenLoc_end = 45707178
    | Mm_Uniprot = Q8BPF7
  }}
}}
'''Exportin 5''', also known as '''XPO5''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: XPO5 exportin 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57510| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Mechanism ==
{{PBB_Summary
| section_title =  
| summary_text = Exportin-5 belongs to a large family of karyopherins (see MIM 602738) that mediate the transport of proteins and other cargo between the nuclear and cytoplasmic compartments.[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: XPO5 exportin 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57510| accessdate = }}</ref>
}}


==References==
=== Binding to pre-miRNA ===
{{reflist|2}}
 
==Further reading==
[[File:XPO5 Image.png|thumb|320x320px|Image of XPO5 ternary complex generated in PyMol from crystal structure entry 3A6P in the Protein Data Bank. XPO5 is labeled green, Ran is labeled red, RNA is multi-colored, and GTP is labeled white.<ref name=":1">{{Cite journal|last=Okada|first=Chimari|last2=Yamashita|first2=Eiki|last3=Lee|first3=Soo Jae|last4=Shibata|first4=Satoshi|last5=Katahira|first5=Jun|last6=Nakagawa|first6=Atsushi|last7=Yoneda|first7=Yoshihiro|last8=Tsukihara|first8=Tomitake|date=2009-11-27|title=A high-resolution structure of the pre-microRNA nuclear export machinery|journal=Science|volume=326|issue=5957|pages=1275–1279|doi=10.1126/science.1178705|issn=1095-9203|pmid=19965479}}</ref>|left]]
{{refbegin | 2}}
After [[RanGTP]] binds to XPO5, the XPO5-RanGTP complex forms a U-like structure to hold the pre-miRNA. The XPO5-RanGTP complex recognizes pre-miRNA by its two-nucleotide [[Directionality (molecular biology)|3’ overhang]]—a sequence consisting of two bases at the 3’ end of the pre-miRNA that are not paired with other bases. This motif is unique to pre-miRNA, and by recognizing it XPO5 ensures specificity for transporting only pre-miRNA. On its own, pre-miRNA is in a “closed” conformation, with the 3’ overhang flipped up toward the RNA [[minor groove]]. However, upon binding to XPO5, the 3’ overhang is flipped downwards away from the rest of the pre-miRNA molecule into an “open” conformation. This helps the backbone phosphates of these two nucleotides form hydrogen bonds with many XPO5 residues, allowing XPO5 to recognize the RNA as pre-miRNA. Because these interactions involve only the RNA phosphate backbone, they are nonspecific and allow XPO5 to recognize and transport any pre-miRNA. The rest of the pre-miRNA stem binds to XPO5 via interactions between the negatively-charged phosphate backbone and several positively-charged interior XPO5 residues.<ref name=":0">{{Cite journal|last=Wang|first=Xia|date=2011|title=Dynamic mechanisms for pre-miRNA binding and export by Exportin-5|url=|journal=RNA|volume=17|pages=1516–1517|via=|doi=10.1261/rna.2732611|pmc=3153975}}</ref>
{{PBB_Further_reading
 
| citations =  
=== XPO5 Ternary Complex Transport Mechanism ===
*{{cite journal  | author=Nakajima D, Okazaki N, Yamakawa H, ''et al.'' |title=Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. |journal=DNA Res. |volume=9 |issue= 3 |pages= 99-106 |year= 2003 |pmid= 12168954 |doi= }}
The combined structure of XPO5, RanGTP, and pre-miRNA is known as the [[ternary complex]]. Once the ternary complex is formed, it diffuses through a nuclear pore complex into the cytoplasm, transporting pre-miRNA into the cytoplasm in the process. Once in the cytoplasm, RanGAP hydrolyzes GTP to GDP, causing a conformational change that releases the pre-miRNA into the cytoplasm.<ref name=":0" />
*{{cite journal  | author=Nagase T, Ishikawa K, Kikuno R, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=6 |issue= 5 |pages= 337-45 |year= 2000 |pmid= 10574462 |doi= }}
 
*{{cite journal  | author=Brownawell AM, Macara IG |title=Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. |journal=J. Cell Biol. |volume=156 |issue= 1 |pages= 53-64 |year= 2002 |pmid= 11777942 |doi= 10.1083/jcb.200110082 }}
=== Export out of the Nucleus ===
*{{cite journal  | author=Bohnsack MT, Regener K, Schwappach B, ''et al.'' |title=Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. |journal=EMBO J. |volume=21 |issue= 22 |pages= 6205-15 |year= 2003 |pmid= 12426392 |doi= }}
It has been suggested, through evidence provided by contour maps of water density, that the interior of XPO5 is [[Hydrophile|hydrophilic]], while the exterior of XPO5 is [[Hydrophobe|hydrophobic]].<ref name=":0" /> Therefore, this enhances the binding capabilities of XPO5 to the nuclear pore complex, allowing for transport of the ternary complex out of the nucleus.<ref name=":0" />
*{{cite journal | author=Calado A, Treichel N, Müller EC, ''et al.'' |title=Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. |journal=EMBO J. |volume=21 |issue= 22 |pages= 6216-24 |year= 2003 |pmid= 12426393 |doi=  }}
 
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
== Additional interactions ==
*{{cite journal | author=Gwizdek C, Ossareh-Nazari B, Brownawell AM, ''et al.'' |title=Exportin-5 mediates nuclear export of minihelix-containing RNAs. |journal=J. Biol. Chem. |volume=278 |issue= 8 |pages= 5505-8 |year= 2003 |pmid= 12509441 |doi= 10.1074/jbc.C200668200 }}
 
*{{cite journal | author=Screaton RA, Kiessling S, Sansom OJ, ''et al.'' |title=Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 9 |pages= 5211-6 |year= 2003 |pmid= 12702765 |doi= 10.1073/pnas.0431215100 }}
XPO5 has been shown to [[Protein-protein interaction|interact]] with [[ILF3]]<ref name=pmid11777942 /> and [[Ran (gene)|Ran]].<ref name=pmid11777942/>
*{{cite journal  | author=Gwizdek C, Ossareh-Nazari B, Brownawell AM, ''et al.'' |title=Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. |journal=J. Biol. Chem. |volume=279 |issue= 2 |pages= 884-91 |year= 2004 |pmid= 14570900 |doi= 10.1074/jbc.M306808200 }}
 
*{{cite journal | author=Mungall AJ, Palmer SA, Sims SK, ''et al.'' |title=The DNA sequence and analysis of human chromosome 6. |journal=Nature |volume=425 |issue= 6960 |pages= 805-11 |year= 2003 |pmid= 14574404 |doi= 10.1038/nature02055 }}
== Potential oncogenic role ==
*{{cite journal  | author=Lund E, Güttinger S, Calado A, ''et al.'' |title=Nuclear export of microRNA precursors. |journal=Science |volume=303 |issue= 5654 |pages= 95-8 |year= 2004 |pmid= 14631048 |doi= 10.1126/science.1090599 }}
Recent evidence has shown higher levels of XPO5 in prostate cancer cell lines in-vitro, suggesting that altered XPO5 expression levels may have a role in cancer development. Suppressing XPO5 has also been found to be therapeutic in-vitro.<ref>{{Cite journal|last=Höti|first=Naseruddin|last2=Yang|first2=Shuang|last3=Aiyetan|first3=Paul|last4=Kumar|first4=Binod|last5=Hu|first5=Yingwei|last6=Clark|first6=David|last7=Eroglu|first7=Arife Unal|last8=Shah|first8=Punit|last9=Johnson|first9=Tamara|date=2017-09-04|title=Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer|journal=Neoplasia (New York, N.Y.)|volume=19|issue=10|pages=817–829|doi=10.1016/j.neo.2017.07.008|issn=1522-8002|pmc=5587889|pmid=28881308}}</ref>
*{{cite journal | author=Yi R, Qin Y, Macara IG, Cullen BR |title=Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. |journal=Genes Dev. |volume=17 |issue= 24 |pages= 3011-6 |year= 2004 |pmid= 14681208 |doi= 10.1101/gad.1158803 }}
 
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
== References ==
*{{cite journal  | author=Bohnsack MT, Czaplinski K, Gorlich D |title=Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. |journal=RNA |volume=10 |issue= 2 |pages= 185-91 |year= 2004 |pmid= 14730017 |doi= }}
{{reflist|33em}}
*{{cite journal  | author=Colland F, Jacq X, Trouplin V, ''et al.'' |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324-32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 }}
 
*{{cite journal | author=Chen T, Brownawell AM, Macara IG |title=Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. |journal=Mol. Cell. Biol. |volume=24 |issue= 15 |pages= 6608-19 |year= 2004 |pmid= 15254228 |doi= 10.1128/MCB.24.15.6608-6619.2004 }}
== Further reading ==
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
{{refbegin|33em}}
*{{cite journal  | author=Yi R, Doehle BP, Qin Y, ''et al.'' |title=Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. |journal=RNA |volume=11 |issue= 2 |pages= 220-6 |year= 2005 |pmid= 15613540 |doi= 10.1261/rna.7233305 }}
* {{cite journal | vauthors = Calado A, Treichel N, Müller EC, Otto A, Kutay U | title = Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA | journal = The EMBO Journal | volume = 21 | issue = 22 | pages = 6216–24 | date = Nov 2002 | pmid = 12426393 | pmc = 137209 | doi = 10.1093/emboj/cdf620 }}
*{{cite journal  | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
* {{cite journal | vauthors = Gwizdek C, Ossareh-Nazari B, Brownawell AM, Doglio A, Bertrand E, Macara IG, Dargemont C | title = Exportin-5 mediates nuclear export of minihelix-containing RNAs | journal = The Journal of Biological Chemistry | volume = 278 | issue = 8 | pages = 5505–8 | date = Feb 2003 | pmid = 12509441 | doi = 10.1074/jbc.C200668200 }}
}}
* {{cite journal | vauthors = Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C | title = Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3 | journal = The Journal of Biological Chemistry | volume = 279 | issue = 2 | pages = 884–91 | date = Jan 2004 | pmid = 14570900 | doi = 10.1074/jbc.M306808200 }}
* {{cite journal | vauthors = Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U | title = Nuclear export of microRNA precursors | journal = Science | volume = 303 | issue = 5654 | pages = 95–8 | date = Jan 2004 | pmid = 14631048 | doi = 10.1126/science.1090599 }}
* {{cite journal | vauthors = Bohnsack MT, Czaplinski K, Gorlich D | title = Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs | journal = RNA | volume = 10 | issue = 2 | pages = 185–91 | date = Feb 2004 | pmid = 14730017 | pmc = 1370530 | doi = 10.1261/rna.5167604 }}
* {{cite journal | vauthors = Chen T, Brownawell AM, Macara IG | title = Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5 | journal = Molecular and Cellular Biology | volume = 24 | issue = 15 | pages = 6608–19 | date = Aug 2004 | pmid = 15254228 | pmc = 444848 | doi = 10.1128/MCB.24.15.6608-6619.2004 }}
* {{cite journal | vauthors = Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR | title = Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs | journal = RNA | volume = 11 | issue = 2 | pages = 220–6 | date = Feb 2005 | pmid = 15613540 | pmc = 1370710 | doi = 10.1261/rna.7233305 }}
{{refend}}
{{refend}}


{{protein-stub}}
[[Category:MicroRNA]]
{{WikiDoc Sources}}

Latest revision as of 12:17, 23 May 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Exportin-5 (XPO5) is a protein that, in humans, is encoded by the XPO5 gene.[1][2][3] In eukaryotic cells, the primary purpose of XPO5 is to export pre-microRNA (also known as pre-miRNA) out of the nucleus and into the cytoplasm, for further processing by the Dicer enzyme.[4][5][6][7] Once in the cytoplasm, the microRNA (also known as miRNA) can act as a gene silencer by regulating translation of mRNA. Although XPO5 is primarily involved in the transport of pre-miRNA, it has also been reported to transport tRNA.[8]

Much research on XPO5 is ongoing. miRNA is a prominent research topic due to its potential use as a therapeutic, with several miRNA-based drugs already in use.[9]

Mechanism

Binding to pre-miRNA

File:XPO5 Image.png
Image of XPO5 ternary complex generated in PyMol from crystal structure entry 3A6P in the Protein Data Bank. XPO5 is labeled green, Ran is labeled red, RNA is multi-colored, and GTP is labeled white.[10]

After RanGTP binds to XPO5, the XPO5-RanGTP complex forms a U-like structure to hold the pre-miRNA. The XPO5-RanGTP complex recognizes pre-miRNA by its two-nucleotide 3’ overhang—a sequence consisting of two bases at the 3’ end of the pre-miRNA that are not paired with other bases. This motif is unique to pre-miRNA, and by recognizing it XPO5 ensures specificity for transporting only pre-miRNA. On its own, pre-miRNA is in a “closed” conformation, with the 3’ overhang flipped up toward the RNA minor groove. However, upon binding to XPO5, the 3’ overhang is flipped downwards away from the rest of the pre-miRNA molecule into an “open” conformation. This helps the backbone phosphates of these two nucleotides form hydrogen bonds with many XPO5 residues, allowing XPO5 to recognize the RNA as pre-miRNA. Because these interactions involve only the RNA phosphate backbone, they are nonspecific and allow XPO5 to recognize and transport any pre-miRNA. The rest of the pre-miRNA stem binds to XPO5 via interactions between the negatively-charged phosphate backbone and several positively-charged interior XPO5 residues.[11]

XPO5 Ternary Complex Transport Mechanism

The combined structure of XPO5, RanGTP, and pre-miRNA is known as the ternary complex. Once the ternary complex is formed, it diffuses through a nuclear pore complex into the cytoplasm, transporting pre-miRNA into the cytoplasm in the process. Once in the cytoplasm, RanGAP hydrolyzes GTP to GDP, causing a conformational change that releases the pre-miRNA into the cytoplasm.[11]

Export out of the Nucleus

It has been suggested, through evidence provided by contour maps of water density, that the interior of XPO5 is hydrophilic, while the exterior of XPO5 is hydrophobic.[11] Therefore, this enhances the binding capabilities of XPO5 to the nuclear pore complex, allowing for transport of the ternary complex out of the nucleus.[11]

Additional interactions

XPO5 has been shown to interact with ILF3[1] and Ran.[1]

Potential oncogenic role

Recent evidence has shown higher levels of XPO5 in prostate cancer cell lines in-vitro, suggesting that altered XPO5 expression levels may have a role in cancer development. Suppressing XPO5 has also been found to be therapeutic in-vitro.[12]

References

  1. 1.0 1.1 1.2 Brownawell AM, Macara IG (Jan 2002). "Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins". The Journal of Cell Biology. 156 (1): 53–64. doi:10.1083/jcb.200110082. PMC 2173575. PMID 11777942.
  2. Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D (Nov 2002). "Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm". The EMBO Journal. 21 (22): 6205–15. doi:10.1093/emboj/cdf613. PMC 137205. PMID 12426392.
  3. "Entrez Gene: XPO5 exportin 5".
  4. Yi R, Qin Y, Macara IG, Cullen BR (Dec 2003). "Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs". Genes & Development. 17 (24): 3011–6. doi:10.1101/gad.1158803. PMC 305252. PMID 14681208.
  5. Wilson RC, Doudna JA (2013). "Molecular mechanisms of RNA interference". Annual Review of Biophysics. 42: 217–39. doi:10.1146/annurev-biophys-083012-130404. PMID 23654304.
  6. Siomi H, Siomi MC (May 2010). "Posttranscriptional regulation of microRNA biogenesis in animals". Molecular Cell. 38 (3): 323–32. doi:10.1016/j.molcel.2010.03.013. PMID 20471939.
  7. Macias S, Cordiner RA, Cáceres JF (Aug 2013). "Cellular functions of the microprocessor". Biochemical Society Transactions. 41 (4): 838–43. doi:10.1042/BST20130011. PMID 23863141.
  8. Gupta, Asmita (2016). "Insights into the Structural Dynamics of Nucleocytoplasmic Transport of tRNA by Exportin-t". Biophysical Journal. 110: 1264–1279. doi:10.1016/j.bpj.2016.02.015. PMC 4816717.
  9. Christopher, Ajay Francis; Kaur, Raman Preet; Kaur, Gunpreet; Kaur, Amandeep; Gupta, Vikas; Bansal, Parveen (2016). "MicroRNA therapeutics: Discovering novel targets and developing specific therapy". Perspectives in Clinical Research. 7 (2): 68–74. doi:10.4103/2229-3485.179431. ISSN 2229-3485. PMC 4840794. PMID 27141472.
  10. Okada, Chimari; Yamashita, Eiki; Lee, Soo Jae; Shibata, Satoshi; Katahira, Jun; Nakagawa, Atsushi; Yoneda, Yoshihiro; Tsukihara, Tomitake (2009-11-27). "A high-resolution structure of the pre-microRNA nuclear export machinery". Science. 326 (5957): 1275–1279. doi:10.1126/science.1178705. ISSN 1095-9203. PMID 19965479.
  11. 11.0 11.1 11.2 11.3 Wang, Xia (2011). "Dynamic mechanisms for pre-miRNA binding and export by Exportin-5". RNA. 17: 1516–1517. doi:10.1261/rna.2732611. PMC 3153975.
  12. Höti, Naseruddin; Yang, Shuang; Aiyetan, Paul; Kumar, Binod; Hu, Yingwei; Clark, David; Eroglu, Arife Unal; Shah, Punit; Johnson, Tamara (2017-09-04). "Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer". Neoplasia (New York, N.Y.). 19 (10): 817–829. doi:10.1016/j.neo.2017.07.008. ISSN 1522-8002. PMC 5587889. PMID 28881308.

Further reading