Wide complex tachycardia differential diagnosis

Jump to navigation Jump to search


Resident
Survival
Guide
File:Physician Extender Algorithms.gif

Wide complex tachycardia Microchapters

Home

Patient Information

Overview

Causes

Differentiating VT from SVT with aberrant conduction

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

EKG Examples

Electrophysiologic testing

Treatment

Medical Therapy

Primary Prevention

Case Studies

Case #1

Wide complex tachycardia differential diagnosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Wide complex tachycardia differential diagnosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Wide complex tachycardia differential diagnosis

CDC on Wide complex tachycardia differential diagnosis

Wide complex tachycardia differential diagnosis in the news

Blogs on Wide complex tachycardia differential diagnosis

Directions to Hospitals Treating Wide complex tachycardia

Risk calculators and risk factors for Wide complex tachycardia differential diagnosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rim Halaby, M.D. [2]

Overview

When wide QRS tachycardia is present on the electrocardiogram ECG, it is necessary to rapidly differentiate whether it is caused by ventricular tachycardia (VT) or a supraventricular tachycardia (SVT) with aberrant conduction. While the EKG provides the most reliable data to distinguish VT from SVT with aberrant conduction, the clinical history and the age of the patient may also provide additional discriminatory information regarding the cause of the wide QRS tachycardia. While older patients with a prior history of myocardial infarction are more likely to have VT, young hemodynamically stable patients presenting with paroxysmal tachycardia are more likely to have SVT with aberrant conduction. Nevertheless, the primary tool to differentiate VT from SVT with aberrant conduction is the ECG. There are several findings that are more common in ventricular tachycardia, and there are also more sophisticated electrophysiologic algorithms such as the Brugada and Vereckei algorithms that can be used to distinguish VT from SVT with aberrant conduction.[1]

The diagnosis of VT is more likely if:

History of Ischemic Heart Disease

Risk factors for the ventricular tachycardia as a cause of wide complex tachycardia include a history of prior myocardial infarction, a history of congestive heart failure, and a history of recent angina pectoris. These three historical features have positive predictive values for VT of > 95% in a small study, but sensitivities of 66%, 24%, and 24%, respectively.[2] Wide complex tachycardia will be due to VT in 98% of cases if there's a history of structural heart disease. Only 7% of patients with SVT with aberrancy will have had a prior myocardial infarction (MI).

Hemodynamic Stability

Hemodynamic stability does not reliably differentiate VT from SVT. Patients with ventricular tachycardia can often be hemodynamically stable, and stable vital signs do not rule out ventricular tachycardia. This is often a major mistake on the part of clinicians and can lead to inappropriate treatment of VT as SVT with poor outcomes. [3]

EKG Findings Suggestive of VT

The Presence of AV Dissociation

Although AV dissociation is highly suggestive of VT, it may also be seen in junctional tachycardias with retrograde block.

Example: Shown below is a wide complex tachycardia. AV dissociation is present as shown by the varying morphology highlighted by the red arrows. LBBB configuration. Absence of RS in the chest leads. The diagnosis is VT.

Example: Shown below is a wide complex tachycardia. AV dissociation is present as shown by the varying morphology highlighted by the red arrows. LBBB configuration. Absence of RS in the chest leads. The diagnosis is VT.

Duration of the QRS Complex

  • A wide complex tachycardia with a RBBB morphology and a QRS > 0.14, or a LBBB morphology with a QRS > 0.16 suggests VT.

Morphology of the QRS Complexes

  • The finding of a positive or negative QRS complex in all precordial leads is in favor of ventricular tachycardia.
  • A monophasic or biphasic RBBB QRS complex in V1. But none of their patients with SVT had a preexisting RBBB. Therefore, this finding is of limited importance (A Wellens criterion).
  • 80 to 85% of aberrant beats have a RBBB pattern, but ectopic beats that arise from the LV have a similar morphology.
  • LBBB with a rightward axis
  • LBBB with the following QRS morphology:
  • R wave in V1 or V2 > 0.03 second
  • Any Q wave in V6
  • Onset of the QRS to nadir of the S wave in V1 > 0.06 seconds
  • Notching of the S wave in V1 or V2
Morphological criteria
LBBB pattern
Initial R more than 40 ms? Yes ≥ VT
Slurred or notched downwards leg of S wave in leads V1 or V2? Yes ≥ VT
Beginning of Q to nadir QS > 60 ms in V1 or V2? Yes ≥ VT LR > 50:1
Q or QS in V6? Yes ≥ VT LR > 50:1
RBBB pattern
Monophasic R or qR in V1? Yes ≥ VT
R taller than R' (rabbit-ear sign)? Yes ≥ VT LR > 50:1
rS in V6? Yes ≥ VT LR > 50:1

Morphology of Premature Beats During Sinus Rhythm

Example: Shown below is a wide complex tachycardia. There is no AV dissociation. A RBBB morphology is present. The wide complex tachycardia resembles sinus rhythm from the same patient. The diagnosis in this patient is SVT with RBBB:
Shown below is the ECG from the same patient as above in sinus rhythm. The QRS complex is very similiar to that during the wide complex tachycardia:

The QRS Axis

The image below illustrates the "Northwest axis"also known as "Extreme Right Axis" or "No Man's Land":

Capture Beats

  • Rare, but one of the strongest pieces of evidence in favor of VT.
  • SVT with aberrancy rarely follows a beat with a short cycle length.

Fusion Beats

Fusion beats are rare, but strongly suggests VT.

Vagal Manuevers

  • VT is generally not affected by vagal stimulation.
  • May terminate reentrant arrhythmias

Atrial Pacing

  • A pacing wire is placed in the RA and the atrium is stimulated at a rate faster than the tachycardia.
  • If ventricular capture occurs and the QRS is normal in duration, then one can exclude the possibility of aberrant conduction.

Onset of the Tachycardia

  • Diagnosis of SVT made if the episode is initiated by a premature P wave.
  • If the paroxysm begins with a QRS then the tachycardia may be either ventricular or junctional in origin.
  • If the first QRS of the tachycardia is preceded by a sinus p wave with a PR interval shorter than that of the conducted sinus beats, the tachycardia is ventricular.

His Bundle Recording

  • In SVT, each QRS is preceded by a His bundle potential.
  • In VT there is no preceding His deflection.
  • The retrograde His deflection is usually obscured by the much larger QRS complex.

Regularity of the Rhythm

Regular

  • VT (slight irregularity of RR)
  • SVT with aberrancy: Sinus, atrial tachycardia (AT), or flutter
  • Antidromic atrioventricular reentrant tachycardia (AVRT)

Irregular

  • The first 50 beats of VT can be irregular
  • SVT with aberrancy: Atrial fibrillation, multifocal atrial tachycardia (MAT)
  • Atrial fibrillation with bypass tract usch as WPW is a dangerous cause of a very rapid irregular rhythm as the atrial rate is conducted rapidly over the bypass tract. Shown below is the tracing of a patient with atrial fibrillation conducting down the bypass tract in WPW. Note that the rate is extremely rapid, and the rhythm is irregularly irregular. It is critical that this rhythm be recognized to avoid the administration of agents that would further accelerate conduction down the accessory pathway in this patient with WPW which could cause degeneration into ventricular fibrillation. The best treatment for this patient is Pronestyl 15 mg/kg load over 30 minutes then 2-6 mg/min gtt or DC cardioversion:
  • The mechanism of SVT with aberrancy is usually concealed retrograde conduction. The ventricular beat penetrates the right branch (RB) or left branch (LB). When the next supraventricular activation front occurs that bundle is refractory and if conduction can occur, it will proceed down the other bundle. Since the RB has a longer refractory period than the LB, a right bundle branch block (RBBB) morphology is more common.
  • Other mechanisms of “rate related aberrancy” are preexisting bundle branch block (BBB), physiologic (phase 3) aberration and use dependent aberration secondary to medication. In physiologic aberration, the stimulus comes to the His-Purkinje system before it has fully recovered from the previous stimulus. The ensuing activation is either blocked or conducts slowly. Again, the RB is the one more at risk. Most commonly seen at the onset of paroxysmal supraventricular tachycardia (PSVT), but can become sustained.
  • In use-dependent aberration, a patient on and anti-arrhythmic (especially class Ic agents) will have a progressive decrement in ventricular conduction rate the more it is stimulated. During faster heart rates, less time is available for the drug to dissociate from the receptor and an increased number of receptors are blocked.

Sophisticated Electrophysiologic Criteria

Several ECG criteria and algorithms have been used to differentiate VT and SVT, the common one of which is Brugada algorithm. Below is a list of all algorithms:

  • Brugada algorithm: sensitivity 89%, specificity 59.2%[4]
  • The lead II R-wave-peak-time: sensitivity 60%, specificity 82.7%[5]
  • The aVR algorithm: sensitivity 87.1%, specificity 48%[6]
  • The Bayesian algorithm: sensitivity 89%, specificity 52%[7]
  • The Griffith algorithm: sensitivity 94.2%, specificity 39.8%[8]

The R Wave Peak Time

In 2010 Joseph Brugada et al. published a new criterion to differentiate VT from SVT in wide complex tachycardias: the R wave peak time (RWPT) in Lead II.[5] To aplly the criteria, the duration of onset of the QRS to the first change in polarity (either nadir Q or peak R) is measured in lead II as shown below. If the RWPT is ≥ 50ms the likelihood of a VT very high (positive likelihood ratio 34.8). This criterion was successful in their own population of 163 selected patients and is awaiting prospective testing in a larger trial.

Example: As shown below, an R-wave to Peak Time (RWPT) of ≥ 50ms in lead II strongly suggests VT:

Brugada Criteria

 
 
 
 
 
Absence of an RS complex
in all precordial leads?
 
 
 
 
 
Yes?

VT (SN=0.21 SP=1.0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R to S interval>100 ms in
one precordial lead?
 
 
 
 
 
Yes?

VT (SN=0.66 SP=0.98)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AV dissociation?
 
 
 
 
 
Yes?

VT (SN=0.82 SP=0.98)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Morphology criteria for VT present
both in precordial leads V1, V2 and V6?
 
 
 
 
 
Yes?

VT (SN=0.987 SP=0.965)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SVT (SN=0.965 SP=0.987)
 
 
 
 
 
 
 
 
 
 
 
 

Vereckei Criteria

  • An algorithm has been proposed by Vereckei and colleagues, wherein in addition to do the traditional criteria, the voltage change on the EKG is used as a final discriminatory criteria.
  • In this method, the voltage change during the initial 40 ms (Vi) and the terminal 40 ms (Vt) of the same QRS complex is used to estimate the (Vi) and terminal (Vt) ventricular activation velocity ratio (Vi/Vt).
  • A Vi/Vt > 1 suggests SVT and a Vi/Vt ≤ 1 suggests VT.[6]


 
 
 
 
 
AV dissociation present?
 
 
 
 
 
Yes?

VT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initial R wave in aVR present?
 
 
 
 
 
Yes?

VT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
QRS morphology unlike BBB or FB?
 
 
 
 
 
Yes?

VT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vi/Vt≤1?
 
 
 
 
 
Yes?

VT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SVT
 
 
 
 
 
 
 
 
 
 
 
 

Calculation of Vi/Vt

Shown below is an image demonstrating the method used to calculate Vi/Vt. In this tracing, Vi/Vt is < 1 is suggestive of ventricular tachycardia according to Vereckei criteria.

Pacemaker Mediated Tachycardia

Pacer spikes are present. There is a ventricular-paced rhythm at or near the upper rate limit at approximately 120-130 beats per minute. Given the mechanical nature of the trigger, the EKG is absolutely regular.

Shown below is a rhythm strip demonstrating pacemaker mediated tachycardia:

Putting It All Together: The ACC Algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wide QRS complex tachycardia
(QRS duration greater than 120 ms)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regular or irregular?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regular
 
 
 
 
 
 
 
 
 
 
 
Irregular
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is QRS identical to that during SR?
If yes, consider:
- SVT and BBB
- Antidromic AVRT
 
 
 
 
 
 
 
 
Atrial fibrillation
Atrial flutter / AT with variable
conduction and:
a) BBB or
b) Antegrade conduction via AP
 
 
 
 
 
 
 
 
Vagal maneuvers or
adenosine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Previous myocardial infarction or structural heart disease? If yes, VT is likely.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 to 1 AV relationship?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes or unknown
 
 
 
 
 
 
 
 
 
 
 
No
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
V rate faster than A rate
 
A rate faster than V rate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
QRS morphology in precordial leads
 
 
 
 
 
 
 
 
 
VT
 
Atrial tachycardia
Atrial flutter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Typical RBBB
or LBBB
 
Precordial leads:
- Concordant
- No R/S pattern
- Onset of R to nadir longer than 100ms
 
RBBB pattern:
- qR, Rs or Rr' in V1
- Frontal plane axis range
from +90 degrees to -90 degrees
 
LBBB pattern:
- R in V1 longer than 30 ms
- R to nadir of S in V1 greater than 60 ms
- qR or qS in V6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SVT
 
VT
 
VT
 
VT
 
 
 
 
 
 
 
 
 
 


The above algorithm is adapted from the American College of Cardiology.

Response to Pharmacotherapy As a Diagnostic Tool to Differentiate the VT from SVT

Although termination of a wide complex tachycardia by either adenosine, a calcium channel blocker, a beta blocker or digoxin is suggestive of supraventricular tachycardia with aberrant conduction, VT can also be terminated by these pharmacotherapies.[9][10] Verapamil should be avoided in patients with wide complex tachycardia as it can result in hemodynamic deterioration in patients with ventricular tachycardia.[11]

References

  1. http://en.ecgpedia.org/wiki/Approach_to_the_Wide_Complex_Tachycardia
  2. Baerman JM, Morady F, DiCarlo LA, de Buitleir M (1987). "Differentiation of ventricular tachycardia from supraventricular tachycardia with aberration: value of the clinical history". Annals of Emergency Medicine. 16 (1): 40–3. PMID 3800075. Retrieved 2013-08-04. Unknown parameter |month= ignored (help)
  3. Morady F, Baerman JM, DiCarlo LA, DeBuitleir M, Krol RB, Wahr DW (1985). "A prevalent misconception regarding wide-complex tachycardias". JAMA : the Journal of the American Medical Association. 254 (19): 2790–2. PMID 4057488. Retrieved 2013-08-04. Unknown parameter |month= ignored (help)
  4. Brugada P, Brugada J, Mont L, Smeets J, Andries EW (1991). "A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex". Circulation. 83 (5): 1649–59. PMID 2022022.
  5. 5.0 5.1 Pava LF, Perafán P, Badiel M, Arango JJ, Mont L, Morillo CA; et al. (2010). "R-wave peak time at DII: a new criterion for differentiating between wide complex QRS tachycardias". Heart Rhythm. 7 (7): 922–6. doi:10.1016/j.hrthm.2010.03.001. PMID 20215043.
  6. 6.0 6.1 Vereckei A, Duray G, Szénási G, Altemose GT, Miller JM (2007). "Application of a new algorithm in the differential diagnosis of wide QRS complex tachycardia". Eur Heart J. 28 (5): 589–600. doi:10.1093/eurheartj/ehl473. PMID 17272358.
  7. Lau EW, Pathamanathan RK, Ng GA, Cooper J, Skehan JD, Griffith MJ (2000). "The Bayesian approach improves the electrocardiographic diagnosis of broad complex tachycardia". Pacing Clin Electrophysiol. 23 (10 Pt 1): 1519–26. PMID 11060873.
  8. Griffith MJ, Garratt CJ, Mounsey P, Camm AJ (1994). "Ventricular tachycardia as default diagnosis in broad complex tachycardia". Lancet. 343 (8894): 386–8. PMID 7905552.
  9. Lerman BB, Belardinelli L, West GA, Berne RM, DiMarco JP (1986). "Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity". Circulation. 74 (2): 270–80. PMID 3015453. Retrieved 2013-08-04. Unknown parameter |month= ignored (help)
  10. Belhassen B, Rotmensch HH, Laniado S (1981). "Response of recurrent sustained ventricular tachycardia to verapamil". British Heart Journal. 46 (6): 679–82. PMC 482717. PMID 7317238. Retrieved 2013-08-04. Unknown parameter |month= ignored (help)
  11. Buxton AE, Marchlinski FE, Doherty JU, Flores B, Josephson ME (1987). "Hazards of intravenous verapamil for sustained ventricular tachycardia". The American Journal of Cardiology. 59 (12): 1107–10. PMID 3578051. Retrieved 2013-08-04. Unknown parameter |month= ignored (help)

Template:WH Template:WS