Venous thromboembolism: Difference between revisions

Jump to navigation Jump to search
Line 59: Line 59:


==Epidemiology==
==Epidemiology==
===Incidence===
*The incidence of VTE increases with age, ranging from less than 5 cases per 100,000 people in childhood to 500 cases per 100,000 people in the elderly.<ref name="pmid12814979">{{cite journal| author=White RH| title=The epidemiology of venous thromboembolism. | journal=Circulation | year= 2003 | volume= 107 | issue= 23 Suppl 1 | pages= I4-8 | pmid=12814979 | doi=10.1161/01.CIR.0000078468.11849.66 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12814979  }} </ref>
*Subjects who are more than 65 years of age are at three times higher risk for VTE compared to those who are 45-54 years old.<ref name="pmid15210384">{{cite journal| author=Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P et al.| title=Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. | journal=Am J Med | year= 2004 | volume= 117 | issue= 1 | pages= 19-25 | pmid=15210384 | doi=10.1016/j.amjmed.2004.01.018 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15210384  }} </ref>
*In the United States, the annual incidence of VTE is estimated to be approximately 100 per 100,000 persons.<ref name="pmid12814979">{{cite journal |author=White RH |title=The epidemiology of venous thromboembolism |journal=Circulation |volume=107 |issue=23 Suppl 1 |pages=I4–8 |year=2003 |month=June |pmid=12814979 |doi=10.1161/01.CIR.0000078468.11849.66 |url=}}</ref>
===Age===
*The incidence of VTE increases with age, ranging from less than 5 cases per 100,000 people in childhood to 500 cases per 100,000 people in the elderly.<ref name="pmid12814979">{{cite journal| author=White RH| title=The epidemiology of venous thromboembolism. | journal=Circulation | year= 2003 | volume= 107 | issue= 23 Suppl 1 | pages= I4-8 | pmid=12814979 | doi=10.1161/01.CIR.0000078468.11849.66 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12814979  }} </ref>
*Subjects who are more than 65 years of age are at three times higher risk for VTE compared to those who are 45-54 years old.<ref name="pmid15210384">{{cite journal| author=Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P et al.| title=Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. | journal=Am J Med | year= 2004 | volume= 117 | issue= 1 | pages= 19-25 | pmid=15210384 | doi=10.1016/j.amjmed.2004.01.018 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15210384  }} </ref>
===Gender===
*Studies about differences in the incidence of VTE by gender have mixed results.
**Some reported a higher incidence of DVT among young females<ref name="pmid9521222">{{cite journal| author=Silverstein MD, Heit JA, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ| title=Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. | journal=Arch Intern Med | year= 1998 | volume= 158 | issue= 6 | pages= 585-93 | pmid=9521222 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9521222  }} </ref>
**Some reported it higher among either older females<ref name="pmid8154949">{{cite journal| author=Kniffin WD, Baron JA, Barrett J, Birkmeyer JD, Anderson FA| title=The epidemiology of diagnosed pulmonary embolism and deep venous thrombosis in the elderly. | journal=Arch Intern Med | year= 1994 | volume= 154 | issue= 8 | pages= 861-6 | pmid=8154949 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8154949  }} </ref>
**Some reported it higher in men.<ref name="pmid15210384">{{cite journal |author=Cushman M, Tsai AW, White RH, ''et al.'' |title=Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology |journal=Am. J. Med. |volume=117 |issue=1 |pages=19–25 |year=2004 |month=July |pmid=15210384 |doi=10.1016/j.amjmed.2004.01.018 |url=}}</ref><ref name="urlVenous Thromboembolism in Adult Hospitalizations — United States, 2007–2009">{{cite web |url=http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6122a1.htm?s_cid=mm6122a1_w |title=Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009 |format= |work= |accessdate=2012-10-06}}</ref>
*In addition, the risk for DVT was reported to consistently increase with age across both genders.<ref name="pmid15210384">{{cite journal |author=Cushman M, Tsai AW, White RH, ''et al.'' |title=Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology |journal=Am. J. Med. |volume=117 |issue=1 |pages=19–25 |year=2004 |month=July |pmid=15210384 |doi=10.1016/j.amjmed.2004.01.018 |url=}}</ref>
===Race===
* There is a significant difference in the incidence of DVT as it relates to race.  African Americans characteristically have the highest incidence of DVT while Caucasians rank as the second highest incidence of DVT.<ref name="pmid12814979">{{cite journal| author=White RH| title=The epidemiology of venous thromboembolism. | journal=Circulation | year= 2003 | volume= 107 | issue= 23 Suppl 1 | pages= I4-8 | pmid=12814979 | doi=10.1161/01.CIR.0000078468.11849.66 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12814979  }} </ref>
* When compared to African Americans and Caucasians, the incidence of DVT is noted to be two to four times lower in Hispanics and Asian-Pacific Islanders.<ref name="pmid12814979">{{cite journal| author=White RH| title=The epidemiology of venous thromboembolism. | journal=Circulation | year= 2003 | volume= 107 | issue= 23 Suppl 1 | pages= I4-8 | pmid=12814979 | doi=10.1161/01.CIR.0000078468.11849.66 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12814979  }} </ref>
* Lower thrombosis incidences in non-Caucasians may be related to a lower prevalence of disorders like [[Factor V Leiden]] or [[Thrombin#Prothrombin 20210a mutation|Prothrombin 20210A mutation]].<ref name="pmid9109469">{{cite journal| author=Ridker PM, Miletich JP, Hennekens CH, Buring JE| title=Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. | journal=JAMA | year= 1997 | volume= 277 | issue= 16 | pages= 1305-7 | pmid=9109469 | doi= | pmc= | url= }} </ref><ref name="pmid9415695">{{cite journal| author=Gregg JP, Yamane AJ, Grody WW| title=Prevalence of the factor V-Leiden mutation in four distinct American ethnic populations. | journal=Am J Med Genet | year= 1997 | volume= 73 | issue= 3 | pages= 334-6 | pmid=9415695 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9415695  }} </ref>
===Hospitalization for VTE===
* During 2007–2009, an estimated annual average of 547,596 hospitalizations had a diagnosis of VTE for adults aged ≥18 years. Estimates for DVT and PE diagnoses were not mutually exclusive. An estimated annual average of 348,558 adult hospitalizations had a diagnosis of DVT, and 277,549 adult hospitalizations had a diagnosis of PE. An estimated annual average of 78,511 adult hospitalizations (14% of overall VTE hospitalizations) had diagnoses of both DVT and PE.<ref name=CDC2> [http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6122a1.htm?s_cid=mm6122a1_w ] Hussain R. Yusuf, MD, James Tsai, MD, Hani K. Atrash, MD, Sheree Boulet, DrPH, Scott D. Grosse, PhD, Div of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, CDC. Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009</ref>
* The estimated average annual number of hospitalizations with VTE was successively greater among older age groups: 54,034 for persons aged 18–39 years; 143,354 for persons aged 40–59 years; and 350,208 for persons aged ≥60 years. The estimated average annual number of hospitalizations with VTE was comparable for men (250,973) and women (296,623). Shown below is an image depicting the estimated average annual number of hospitalization with a diagnosis of DVT, PE, or VTE by age and sex.<ref name=CDC2> [http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6122a1.htm?s_cid=mm6122a1_w ] Hussain R. Yusuf, MD, James Tsai, MD, Hani K. Atrash, MD, Sheree Boulet, DrPH, Scott D. Grosse, PhD, Div of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, CDC. Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009</ref>
[[Image:Estimated average annual number of hospitalization VTE.gif|frame|center|Estimated average annual number of hospitalizations with a diagnosis of deep thrombosis (DVT), pulmonary embolism (PE), or venous thromboembolism (VTE), by patient sex and age group — National Hospital Discharge Survey, United States, 2007–2009 - [https://www.cdc.gov/mmwr/pdf/wk/mm6122.pdf Source:CDC]]]
* The average annual rates of hospitalizations with a discharge diagnosis of DVT, PE, or VTE among adults were 152, 121, and 239 per 100,000 population, respectively. For VTE, the average annual rates were 60 per 100,000 population aged 18–39 years, 143 for persons aged 40–49 years, 200 for persons aged 50–59 years, 391 for persons aged 60–69 years, 727 for persons aged 70–79 years, and 1,134 for persons aged ≥80 years. The rates of hospitalization were similar for men and women, and the point estimates increased for both sexes by age.<ref name=CDC2> [http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6122a1.htm?s_cid=mm6122a1_w ] Hussain R. Yusuf, MD, James Tsai, MD, Hani K. Atrash, MD, Sheree Boulet, DrPH, Scott D. Grosse, PhD, Div of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, CDC. Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009</ref>
* On average, 28,726 hospitalized adults with a VTE diagnosis died each year. Of these patients, an average of 13,164 had a DVT diagnosis and 19,297 had a PE diagnosis; 3,735 had both DVT and PE diagnoses.<ref name=CDC2> [http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6122a1.htm?s_cid=mm6122a1_w ] Hussain R. Yusuf, MD, James Tsai, MD, Hani K. Atrash, MD, Sheree Boulet, DrPH, Scott D. Grosse, PhD, Div of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, CDC. Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009</ref>
===Recurrence of VTE===
* One-third (about 33%) of people with VTE will have a recurrence within 10 years.<ref name="pmid20331949">{{cite journal| author=Beckman MG, Hooper WC, Critchley SE, Ortel TL| title=Venous thromboembolism: a public health concern. | journal=Am J Prev Med | year= 2010 | volume= 38 | issue= 4 Suppl | pages= S495-501 | pmid=20331949 | doi=10.1016/j.amepre.2009.12.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20331949  }} </ref><ref name=CDC3>[http://www.cdc.gov/ncbddd/dvt/data.html CDC- Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) — Blood Clot Forming in a Vein]</ref>
* The risk of recurrence of [[VTE]] in patients diagnosed with first-time [[VTE]] is estimated to be around 7-8 percent per year during an average follow up period of 2.2 years of subsequent observation of 265 patients.<ref name="pmid15210384">{{cite journal |author=Cushman M, Tsai AW, White RH, ''et al.''|title=Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology |journal=Am. J. Med.|volume=117 |issue=1 |pages=19–25 |year=2004 |month=July |pmid=15210384 |doi=10.1016/j.amjmed.2004.01.018 |url=}}</ref>
* Among patients with a first episode of VTE, the risk of recurrence of VTE is particularly elevated in the first 6 to 12 months following the first episode of VTE.  The risk of recurrent VTE remains up to 10 years, with a estimated cumulative incidence of first overall VTE recurrence of 30 %.  Predictors for recurrence of [[VTE]] include [[malignancy]], neurological diseases, and [[paresis]].<ref name="pmid10737275">{{cite journal| author=Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton LJ| title=Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. | journal=Arch Intern Med | year= 2000 | volume= 160 | issue= 6 | pages= 761-8 | pmid=10737275 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10737275  }} </ref>
* In recent years, the increase in [[thrombosis]] incidence may be related to improved diagnostic modalities and increased awareness by clinicians.<ref name="pmid12814979">{{cite journal |author=White RH |title=The epidemiology of venous thromboembolism |journal=Circulation |volume=107 |issue=23 Suppl 1 |pages=I4–8 |year=2003|month=June |pmid=12814979 |doi=10.1161/01.CIR.0000078468.11849.66 |url=}}</ref>
===Complications of VTE===
* Estimates suggest that 60,000-100,000 Americans die of VTE, 10 to 30% of which will die within one month of diagnosis.<ref name="pmid20331949">{{cite journal| author=Beckman MG, Hooper WC, Critchley SE, Ortel TL| title=Venous thromboembolism: a public health concern. | journal=Am J Prev Med | year= 2010 | volume= 38 | issue= 4 Suppl | pages= S495-501 | pmid=20331949 | doi=10.1016/j.amepre.2009.12.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20331949  }} </ref><ref name=CDC3>[http://www.cdc.gov/ncbddd/dvt/data.html CDC- Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) — Blood Clot Forming in a Vein]</ref>
* Among people who have had a DVT, one-half will have long-term complications ([[post-thrombotic syndrome]]) such as swelling, pain, discoloration, and scaling in the affected limb.<ref name="pmid20331949">{{cite journal| author=Beckman MG, Hooper WC, Critchley SE, Ortel TL| title=Venous thromboembolism: a public health concern. | journal=Am J Prev Med | year= 2010 | volume= 38 | issue= 4 Suppl | pages= S495-501 | pmid=20331949 | doi=10.1016/j.amepre.2009.12.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20331949  }} </ref><ref name=CDC3>[http://www.cdc.gov/ncbddd/dvt/data.html CDC- Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) — Blood Clot Forming in a Vein]</ref>


==Risk Factors==
==Risk Factors==

Revision as of 17:50, 12 October 2017

Venous thromboembolism Microchapters

Patient Information

Deep vein thrombosis
Pulmonary embolism

Overview

Classification

Epidemiology

Risk Factors

Diagnosis

Treatment

Deep Vein Thrombosis
Pulmonary Embolism

Prevention

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]:Associate Editor(s)-in-Chief: Syed Hassan A. Kazmi BSc, MD [3]

Overiew

Classification

Venous thromboembolism (VTE) may be classified into:[1]

  • Deep vein thrombosis (DVT)
  • Pulmonary embolism (PE)

The following table further classifies DVT and PE:[2][3][4][5][4][6][7][8]

Classification of Venous thromboembolism
Clinical diagnosis Sub-classification Comments
Deep vein thrombosis Upper extremity
  • Uncommon and accounts for 1-5 % of all DVT
  • Most likely due to:
    • Central venous catheter
    • Cardiac pacemaker
    • Implantable cardioverter defibrillator
    • Effort thrombosis (Paget–Schroetter disease)
    • Cancer
Lower extremity
  • Proximal:
    • Popliteal veins
    • Femoral veins
    • Iliac veins
  • Isolated distal:
    • Calf veins (Peroneal, soleal, posterior tibial, gastrocnemial, soleal, gastrocnemial, peroneal, posterior tibial)
Pulmonary embolism (PE) Massive PE (High risk)
  • Sustained hypotension (systolic blood pressure <90 mm Hg), not due to arrhythmia, hypovolemia, sepsis, or left ventricular dysfunction, and either lasting for at least 15 minutes or necessitating the administration of inotropes

OR

  • Pulselessness

OR

  • Persistent profound bradycardia (heart rate < 40 bpm) plus findings of shock
Sub-massive PE (Intermediate risk PE)
  • Right ventricular dysfunction OR myocardial necrosis

AND

  • Absence of systemic hypotension (systolic blood pressure >90 mm Hg)
Low risk PE

Epidemiology

Incidence

  • The incidence of VTE increases with age, ranging from less than 5 cases per 100,000 people in childhood to 500 cases per 100,000 people in the elderly.[9]
  • Subjects who are more than 65 years of age are at three times higher risk for VTE compared to those who are 45-54 years old.[10]
  • In the United States, the annual incidence of VTE is estimated to be approximately 100 per 100,000 persons.[9]

Age

  • The incidence of VTE increases with age, ranging from less than 5 cases per 100,000 people in childhood to 500 cases per 100,000 people in the elderly.[9]
  • Subjects who are more than 65 years of age are at three times higher risk for VTE compared to those who are 45-54 years old.[10]

Gender

  • Studies about differences in the incidence of VTE by gender have mixed results.
    • Some reported a higher incidence of DVT among young females[11]
    • Some reported it higher among either older females[12]
    • Some reported it higher in men.[10][13]
  • In addition, the risk for DVT was reported to consistently increase with age across both genders.[10]

Race

  • There is a significant difference in the incidence of DVT as it relates to race. African Americans characteristically have the highest incidence of DVT while Caucasians rank as the second highest incidence of DVT.[9]
  • When compared to African Americans and Caucasians, the incidence of DVT is noted to be two to four times lower in Hispanics and Asian-Pacific Islanders.[9]
  • Lower thrombosis incidences in non-Caucasians may be related to a lower prevalence of disorders like Factor V Leiden or Prothrombin 20210A mutation.[14][15]

Hospitalization for VTE

  • During 2007–2009, an estimated annual average of 547,596 hospitalizations had a diagnosis of VTE for adults aged ≥18 years. Estimates for DVT and PE diagnoses were not mutually exclusive. An estimated annual average of 348,558 adult hospitalizations had a diagnosis of DVT, and 277,549 adult hospitalizations had a diagnosis of PE. An estimated annual average of 78,511 adult hospitalizations (14% of overall VTE hospitalizations) had diagnoses of both DVT and PE.[16]
  • The estimated average annual number of hospitalizations with VTE was successively greater among older age groups: 54,034 for persons aged 18–39 years; 143,354 for persons aged 40–59 years; and 350,208 for persons aged ≥60 years. The estimated average annual number of hospitalizations with VTE was comparable for men (250,973) and women (296,623). Shown below is an image depicting the estimated average annual number of hospitalization with a diagnosis of DVT, PE, or VTE by age and sex.[16]
Estimated average annual number of hospitalizations with a diagnosis of deep thrombosis (DVT), pulmonary embolism (PE), or venous thromboembolism (VTE), by patient sex and age group — National Hospital Discharge Survey, United States, 2007–2009 - Source:CDC
  • The average annual rates of hospitalizations with a discharge diagnosis of DVT, PE, or VTE among adults were 152, 121, and 239 per 100,000 population, respectively. For VTE, the average annual rates were 60 per 100,000 population aged 18–39 years, 143 for persons aged 40–49 years, 200 for persons aged 50–59 years, 391 for persons aged 60–69 years, 727 for persons aged 70–79 years, and 1,134 for persons aged ≥80 years. The rates of hospitalization were similar for men and women, and the point estimates increased for both sexes by age.[16]
  • On average, 28,726 hospitalized adults with a VTE diagnosis died each year. Of these patients, an average of 13,164 had a DVT diagnosis and 19,297 had a PE diagnosis; 3,735 had both DVT and PE diagnoses.[16]

Recurrence of VTE

  • One-third (about 33%) of people with VTE will have a recurrence within 10 years.[17][18]
  • The risk of recurrence of VTE in patients diagnosed with first-time VTE is estimated to be around 7-8 percent per year during an average follow up period of 2.2 years of subsequent observation of 265 patients.[10]
  • Among patients with a first episode of VTE, the risk of recurrence of VTE is particularly elevated in the first 6 to 12 months following the first episode of VTE. The risk of recurrent VTE remains up to 10 years, with a estimated cumulative incidence of first overall VTE recurrence of 30 %. Predictors for recurrence of VTE include malignancy, neurological diseases, and paresis.[19]
  • In recent years, the increase in thrombosis incidence may be related to improved diagnostic modalities and increased awareness by clinicians.[9]

Complications of VTE

  • Estimates suggest that 60,000-100,000 Americans die of VTE, 10 to 30% of which will die within one month of diagnosis.[17][18]
  • Among people who have had a DVT, one-half will have long-term complications (post-thrombotic syndrome) such as swelling, pain, discoloration, and scaling in the affected limb.[17][18]

Risk Factors

Shown below is a list of predisposing factors for VTE.[20][21] The risk factors are classified as moderate or weak depending on how strongly they predispose for a VTE.

Moderate risk factors Weak risk factors
Chemotherapy

Chronic heart failure
Respiratory failure
Hormone replacement therapy
Cancer
Oral contraceptive pills
Stroke
Pregnancy
Postpartum
❑ Prior history of VTE
Thrombophilia

❑ Advanced age

Laparoscopic surgery
❑ Prepartum
Obesity
Varicose veins

Risk factors of VTE may be categorized in to modifiable, non-modifiable, temporary and other risk factors.

Modifiable Risk Factors Non-Modifiable Risk Factors Temporary Risk Factors Other Risk Factors

❑ Modifiable risk factors are reversible based upon lifestyle/behavior modification.
Obesity is defined as a body-mass index (BMI) above 30 kg/m2.[22] [23] [24]
Smoking:[22] Smoking significantly increases the risk of DVT, particularly among women who are taking oral contraceptive pills as well as among obese people.
❑ Use of oral contraceptives[25]
Hyperhomocysteinemia:[26] Hyperhomocysteinemia can be reduced with vitamin B supplementation.

❑ Advanced age
Heart failure
Thrombophilia or hypercoagulable state
Polycythemia vera

Factor V Leiden
Prothrombin G20210A mutation
Protein C deficiency
Protein S deficiency
Activated protein C resistance
Antithrombin III deficiency
Factor VIII mutation
Antiphospholipid syndrome
Heparin induced thrombocytopenia
Nephrotic syndrome
Paroxysmal nocturnal hemoglobinuria

Pregnancy and the peri-partum period
❑ Active cancer
Central venous catheter

❑ Other possible factors associated with VTE include:[27]

❑ Nutrition low in fish
Psychological stress
❑ Cardiovascular risk factors such as diabetes and hypercholesterolemia

Diagnosis

Treatment

Prevention In Acutely Ill Hospitalized Patients

Risk assessment in acutely ill patients

The following scoring systems can be used to assess the risk of VTE, based on risk factors:

Padua prediction score for VTE

Shown below is a table depicting Padua predictive score for VTE among hospitalized medical patients. The interpretation of the score is as follows:

  • Score≥ 4: High risk for VTE
  • Score< 4: Low risk for VTE[28]
Variable Score
Active cancer 3
Previous VTE 3
Decreased mobility 3
Thrombophilia 3
Previous trauma or surgery within that last month 2
Age≥ 70 1
Heart and/or respiratory failure 1
Ischemic stroke or acute myocardial infarction 1
Acute rheumatologic disorder and/or acute infection 1
Obesity 1
Hormonal therapy 1

IMPROVE predictive score for VTE

Calculation of the IMPROVE predictive score

Variable Score[29]
Prior episode of VTE 3
Thrombophilia 3
Malignancy 1
Age more than 60 years 1

Interpretation of the IMPROVE predictive score

Score Predicted VTE risk through 3 months[29]
0 0.5%
1 1.0%
2 1.7%
3 3.1%
4 5.4%
5-8 11%

Preventive Approach In Acutely Ill Hospitalized Patients Based On Risk assessment

Abbreviations: LDUH: low dose unfractionated heparin; LMWH: low molecular weight heparin; VTE: Venous thromboembolism

 
 
 
 
 
What is the risk of thrombosis in the acutely ill patient?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
High
 
Low
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is the patient bleeding or at high risk of bleeding?
 
No VTE prophylaxis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
 
 
Mechanical VTE prophylaxis
For the period of immobilization or hospital stay only
Graduated compression stocking
Intermittent pneumatic compression
 
Pharmacological VTE prophylaxis
For the period of immobilization or hospital stay only
LMWH
LDUH, BID
LDUH, TID
Fondaparinux
 
 
 
 
 
 
 
 
 
 
 
Did the bleeding or bleeding risk subside
AND
the patient is still at increased risk of thrombosis?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
❑ Substitute mechanical prophylaxis by pharmacological prophylaxis
 
❑ Continue mechanical prophylaxis

Prevention In Critically Ill Hospitalized Patients

Risk assessment in critically ill patients

IMPROVE bleeding risk score

Shown below is a table depicting the IMPROVE risk score for bleeding among hospitalized medical patients. The scores can be interpreted as such:[30]

  • Score ≥7: Elevated risk of bleeding
  • Score <7: Not elevated risk of bleeding
Variable Score
Active gastric or duodenal ulcer 4.5
Prior bleeding within the last 3 months 4
Thrombocytopenia (<50x109/L) 4
Age ≥ 85 years 3.5
Liver failure (INR>1.5) 2.5
Severe kidney failure (GFR< 30 mL/min/m2) 2.5
Admission to ICU or CCU 2.5
Central venous catheter 2
Rheumatic disease 2
Active malignancy 2
Age: 40-84 years 1.5
Male 1
Moderate kidney failure (GFR: 30-59 mL/min/m2) 1

Preventive Approach In Critically Ill Hospitalized Patients

Abbreviations: LDUH: low dose unfractionated heparin; LMWH: low molecular weight heparin; VTE: Venous thromboembolism

 
 
 
Is the critically ill patient bleeding or at risk for major bleeding?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
 
 
Mechanical VTE prophylaxis
 
Pharmacological VTE prophylaxis
LMWH
LDUH
 
 
 
 
 
 
 
 
 
 
 
Did the bleeding or bleeding risk subside?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
❑ Substitute mechanical prophylaxis by pharmacological prophylaxis
 
❑ Continue mechanical prophylaxis
  1. Moheimani F, Jackson DE (2011). "Venous thromboembolism: classification, risk factors, diagnosis, and management". ISRN Hematol. 2011: 124610. doi:10.5402/2011/124610. PMC 3196154. PMID 22084692.
  2. Anand SS, Wells PS, Hunt D, Brill-Edwards P, Cook D, Ginsberg JS (1998). "Does this patient have deep vein thrombosis?". JAMA. 279 (14): 1094–9. PMID 9546569. Unknown parameter |month= ignored (help)
  3. Wells PS, Hirsh J, Anderson DR; et al. (1995). "Accuracy of clinical assessment of deep-vein thrombosis". Lancet. 345 (8961): 1326–30. PMID 7752753. Unknown parameter |month= ignored (help)
  4. 4.0 4.1 Cogo A, Lensing AW, Prandoni P, Hirsh J (1993). "Distribution of thrombosis in patients with symptomatic deep vein thrombosis. Implications for simplifying the diagnostic process with compression ultrasound". Arch. Intern. Med. 153 (24): 2777–80. PMID 8257253. Unknown parameter |month= ignored (help)
  5. Galanaud JP, Sevestre-Pietri MA, Bosson JL, Laroche JP, Righini M, Brisot D, Boge G, van Kien AK, Gattolliat O, Bettarel-Binon C, Gris JC, Genty C, Quere I (2009). "Comparative study on risk factors and early outcome of symptomatic distal versus proximal deep vein thrombosis: results from the OPTIMEV study". Thromb. Haemost. 102 (3): 493–500. doi:10.1160/TH09-01-0053. PMID 19718469. Retrieved 2011-12-14. Unknown parameter |month= ignored (help)
  6. Joffe HV, Kucher N, Tapson VF, Goldhaber SZ (2004). "Upper-extremity deep vein thrombosis: a prospective registry of 592 patients". Circulation. 110 (12): 1605–11. doi:10.1161/01.CIR.0000142289.94369.D7. PMID 15353493. Retrieved 2012-10-07. Unknown parameter |month= ignored (help)
  7. Isma N, Svensson PJ, Gottsäter A, Lindblad B (2010). "Upper extremity deep venous thrombosis in the population-based Malmö thrombophilia study (MATS). Epidemiology, risk factors, recurrence risk, and mortality". Thromb Res. 125 (6): e335–8. doi:10.1016/j.thromres.2010.03.005. PMID 20406709.
  8. Muñoz FJ, Mismetti P, Poggio R, Valle R, Barrón M, Guil M; et al. (2008). "Clinical outcome of patients with upper-extremity deep vein thrombosis: results from the RIETE Registry". Chest. 133 (1): 143–8. doi:10.1378/chest.07-1432. PMID 17925416.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 White RH (2003). "The epidemiology of venous thromboembolism". Circulation. 107 (23 Suppl 1): I4–8. doi:10.1161/01.CIR.0000078468.11849.66. PMID 12814979.
  10. 10.0 10.1 10.2 10.3 10.4 Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P; et al. (2004). "Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology". Am J Med. 117 (1): 19–25. doi:10.1016/j.amjmed.2004.01.018. PMID 15210384.
  11. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ (1998). "Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study". Arch Intern Med. 158 (6): 585–93. PMID 9521222.
  12. Kniffin WD, Baron JA, Barrett J, Birkmeyer JD, Anderson FA (1994). "The epidemiology of diagnosed pulmonary embolism and deep venous thrombosis in the elderly". Arch Intern Med. 154 (8): 861–6. PMID 8154949.
  13. "Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009". Retrieved 2012-10-06.
  14. Ridker PM, Miletich JP, Hennekens CH, Buring JE (1997). "Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening". JAMA. 277 (16): 1305–7. PMID 9109469.
  15. Gregg JP, Yamane AJ, Grody WW (1997). "Prevalence of the factor V-Leiden mutation in four distinct American ethnic populations". Am J Med Genet. 73 (3): 334–6. PMID 9415695.
  16. 16.0 16.1 16.2 16.3 [1] Hussain R. Yusuf, MD, James Tsai, MD, Hani K. Atrash, MD, Sheree Boulet, DrPH, Scott D. Grosse, PhD, Div of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, CDC. Venous Thromboembolism in Adult Hospitalizations — United States, 2007–2009
  17. 17.0 17.1 17.2 Beckman MG, Hooper WC, Critchley SE, Ortel TL (2010). "Venous thromboembolism: a public health concern". Am J Prev Med. 38 (4 Suppl): S495–501. doi:10.1016/j.amepre.2009.12.017. PMID 20331949.
  18. 18.0 18.1 18.2 CDC- Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) — Blood Clot Forming in a Vein
  19. Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton LJ (2000). "Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study". Arch Intern Med. 160 (6): 761–8. PMID 10737275.
  20. Anderson FA, Spencer FA (2003). "Risk factors for venous thromboembolism". Circulation. 107 (23 Suppl 1): I9–16. doi:10.1161/01.CIR.0000078469.07362.E6. PMID 12814980.
  21. Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P; et al. (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870.
  22. 22.0 22.1 Holst AG, Jensen G, Prescott E (2010). "Risk factors for venous thromboembolism: results from the Copenhagen City Heart Study". Circulation. 121 (17): 1896–903. doi:10.1161/CIRCULATIONAHA.109.921460. PMID 20404252.
  23. Vayá A, Martínez-Triguero ML, España F, Todolí JA, Bonet E, Corella D (2011). "The metabolic syndrome and its individual components: its association with venous thromboembolism in a Mediterranean population". Metab Syndr Relat Disord. 9 (3): 197–201. doi:10.1089/met.2010.0117. PMID 21352080.
  24. Eichinger S, Hron G, Bialonczyk C, Hirschl M, Minar E, Wagner O; et al. (2008). "Overweight, obesity, and the risk of recurrent venous thromboembolism". Arch Intern Med. 168 (15): 1678–83. doi:10.1001/archinte.168.15.1678. PMID 18695082.
  25. Pomp ER, Rosendaal FR, Doggen CJ (2008). "Smoking increases the risk of venous thrombosis and acts synergistically with oral contraceptive use". Am J Hematol. 83 (2): 97–102. doi:10.1002/ajh.21059. PMID 17726684.
  26. den Heijer M, Koster T, Blom HJ, Bos GM, Briet E, Reitsma PH; et al. (1996). "Hyperhomocysteinemia as a risk factor for deep-vein thrombosis". N Engl J Med. 334 (12): 759–62. doi:10.1056/NEJM199603213341203. PMID 8592549.
  27. Konofal E, Lecendreux M, Cortese S (2010). "Sleep and ADHD". Sleep Med. 11 (7): 652–8. doi:10.1016/j.sleep.2010.02.012. PMID 20620109.
  28. Barbar S, Noventa F, Rossetto V, Ferrari A, Brandolin B, Perlati M; et al. (2010). "A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score". J Thromb Haemost. 8 (11): 2450–7. doi:10.1111/j.1538-7836.2010.04044.x. PMID 20738765.
  29. 29.0 29.1 Spyropoulos AC, Anderson FA, Fitzgerald G, Decousus H, Pini M, Chong BH; et al. (2011). "Predictive and associative models to identify hospitalized medical patients at risk for VTE". Chest. 140 (3): 706–14. doi:10.1378/chest.10-1944. PMID 21436241.
  30. Decousus H, Tapson VF, Bergmann JF, Chong BH, Froehlich JB, Kakkar AK; et al. (2011). "Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators". Chest. 139 (1): 69–79. doi:10.1378/chest.09-3081. PMID 20453069.