Transcription initiation protein SPT3 homolog: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS (v470))
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Transcription initiation protein SPT3 homolog''' is a [[protein]] that in humans is encoded by the ''SUPT3H'' [[gene]].<ref name="pmid9674425">{{cite journal | vauthors = Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y | title = Histone-like TAFs within the PCAF histone acetylase complex | journal = Cell | volume = 94 | issue = 1 | pages = 35–44 | date = Jul 1998 | pmid = 9674425 | pmc =  | doi = 10.1016/S0092-8674(00)81219-2 }}</ref><ref name="pmid9726987">{{cite journal | vauthors = Martinez E, Kundu TK, Fu J, Roeder RG | title = A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID | journal = The Journal of Biological Chemistry | volume = 273 | issue = 37 | pages = 23781–5 | date = Sep 1998 | pmid = 9726987 | pmc = | doi = 10.1074/jbc.273.37.23781 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SUPT3H suppressor of Ty 3 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8464| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Interactions ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Suppressor of Ty 3 homolog (S. cerevisiae)
| HGNCid = 11466
| Symbol = SUPT3H
| AltSymbols =; SPT3; SPT3L
| OMIM = 602947
| ECnumber = 
| Homologene = 31184
| MGIid = 1923723
| GeneAtlas_image1 = PBB_GE_SUPT3H_206506_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_SUPT3H_211106_at_tn.png
| Function = {{GNF_GO|id=GO:0003702 |text = RNA polymerase II transcription factor activity}} {{GNF_GO|id=GO:0016563 |text = transcription activator activity}} {{GNF_GO|id=GO:0016986 |text = transcription initiation factor activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005667 |text = transcription factor complex}}
| Process = {{GNF_GO|id=GO:0000074 |text = regulation of progression through cell cycle}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006352 |text = transcription initiation}} {{GNF_GO|id=GO:0006357 |text = regulation of transcription from RNA polymerase II promoter}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 8464
    | Hs_Ensembl = ENSG00000196284
    | Hs_RefseqProtein = NP_003590
    | Hs_RefseqmRNA = NM_003599
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 6
    | Hs_GenLoc_start = 44885032
    | Hs_GenLoc_end = 45453669
    | Hs_Uniprot = O75486
    | Mm_EntrezGene = 109115
    | Mm_Ensembl = ENSMUSG00000038954
    | Mm_RefseqmRNA = NM_178652
    | Mm_RefseqProtein = NP_848767
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 17
    | Mm_GenLoc_start = 44249665
    | Mm_GenLoc_end = 44511708
    | Mm_Uniprot = 
  }}
}}
'''Suppressor of Ty 3 homolog (S. cerevisiae)''', also known as '''SUPT3H''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SUPT3H suppressor of Ty 3 homolog (S. cerevisiae)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8464| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
Transcription initiation protein SPT3 homolog has been shown to [[Protein-protein interaction|interact]] with [[GCN5L2]],<ref name=pmid11406595>{{cite journal | vauthors = Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L | title = UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation | journal = The EMBO Journal | volume = 20 | issue = 12 | pages = 3187–96 | date = Jun 2001 | pmid = 11406595 | pmc = 150203 | doi = 10.1093/emboj/20.12.3187 }}</ref><ref name=pmid11564863>{{cite journal | vauthors = Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG | title = Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo | journal = Molecular and Cellular Biology | volume = 21 | issue = 20 | pages = 6782–95 | date = Oct 2001 | pmid = 11564863 | pmc = 99856 | doi = 10.1128/MCB.21.20.6782-6795.2001 }}</ref> [[TAF6L]],<ref name=pmid11564863/> [[TADA3L]],<ref name=pmid11564863/> [[TAF5L]],<ref name=pmid11564863/> [[SF3B3]],<ref name=pmid11564863/> [[SUPT7L]],<ref name=pmid11564863/> [[Myc]],<ref name=pmid12660246>{{cite journal | vauthors = Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E | title = c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation | journal = The Journal of Biological Chemistry | volume = 278 | issue = 22 | pages = 20405–12 | date = May 2003 | pmid = 12660246 | pmc = 4031917 | doi = 10.1074/jbc.M211795200 }}</ref> [[TAF9]],<ref name=pmid11564863/> [[Transformation/transcription domain-associated protein]],<ref name=pmid11564863/> [[TAF12]],<ref name=pmid11564863/> [[TAF10]],<ref name=pmid11406595/><ref name=pmid11564863/> [[TAF4]]<ref name=pmid11406595/> and [[DDB1]].<ref name=pmid11564863/>
{{PBB_Summary
| section_title =  
| summary_text =  
}}


==References==
==Model organisms==
{{reflist|2}}
[[Model organism]]s have been used in the study of SUPT3H function. A conditional [[knockout mouse]] line called ''Supt3<sup>tm1a(EUCOMM)Hmgu</sup>'' was generated at the [[Wellcome Trust Sanger Institute]].<ref name="mgp_reference">{{cite journal |title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |author=Gerdin AK |year=2010 |journal=Acta Ophthalmologica|volume=88 |pages=925–7|doi=10.1111/j.1755-3768.2010.4142.x }}</ref> Male and female animals underwent a standardized [[phenotypic screen]]<ref name="IMPCsearch_ref">{{cite web |url=http://www.mousephenotype.org/data/search?q=Supt3#fq=*:*&facet=gene |title=International Mouse Phenotyping Consortium}}</ref> to determine the effects of deletion.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref><ref name="pmid23870131">{{cite journal | vauthors = White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP | title = Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes | journal = Cell | volume = 154 | issue = 2 | pages = 452–64 | date = Jul 2013 | pmid = 23870131 | doi = 10.1016/j.cell.2013.06.022 | pmc=3717207}}</ref> Additional screens performed:  - In-depth immunological phenotyping<ref name="iii_ref">{{cite web |url= http://www.immunophenotyping.org/data/search?keys=Supt3&field_gene_construct_tid=All |title=Infection and Immunity Immunophenotyping (3i) Consortium}}</ref>
==Further reading==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: left;" |
{{refbegin | 2}}
|+ ''Supt3'' knockout mouse phenotype
{{PBB_Further_reading
|-
| citations =
! Characteristic!! Phenotype
*{{cite journal  | author=Ogryzko VV, Kotani T, Zhang X, ''et al.'' |title=Histone-like TAFs within the PCAF histone acetylase complex. |journal=Cell |volume=94 |issue= 1 |pages= 35-44 |year= 1998 |pmid= 9674425 |doi=  }}
|-
*{{cite journal | author=Martinez E, Kundu TK, Fu J, Roeder RG |title=A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. |journal=J. Biol. Chem. |volume=273 |issue= 37 |pages= 23781-5 |year= 1998 |pmid= 9726987 |doi=  }}
| colspan=2; style="text-align: center;" | All data available at.<ref name="IMPCsearch_ref"/><ref name="iii_ref" />
*{{cite journal  | author=Yu J, Madison JM, Mundlos S, ''et al.'' |title=Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H). |journal=Genomics |volume=53 |issue= 1 |pages= 90-6 |year= 1998 |pmid= 9787080 |doi= 10.1006/geno.1998.5500 }}
|-
*{{cite journal  | author=Vassilev A, Yamauchi J, Kotani T, ''et al.'' |title=The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. |journal=Mol. Cell |volume=2 |issue= 6 |pages= 869-75 |year= 1999 |pmid= 9885574 |doi= }}
| Peripheral blood leukocytes 6 Weeks || bgcolor="#488ED3"|Normal
*{{cite journal | author=Brand M, Yamamoto K, Staub A, Tora L |title=Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. |journal=J. Biol. Chem. |volume=274 |issue= 26 |pages= 18285-9 |year= 1999 |pmid= 10373431 |doi= }}
*{{cite journal | author=Speek M |title=Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. |journal=Mol. Cell. Biol. |volume=21 |issue= 6 |pages= 1973-85 |year= 2001 |pmid= 11238933 |doi= 10.1128/MCB.21.6.1973-1985.2001 }}
*{{cite journal | author=Brand M, Moggs JG, Oulad-Abdelghani M, ''et al.'' |title=UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. |journal=EMBO J. |volume=20 |issue= 12 |pages= 3187-96 |year= 2001 |pmid= 11406595 |doi= 10.1093/emboj/20.12.3187 }}
*{{cite journal | author=Martinez E, Palhan VB, Tjernberg A, ''et al.'' |title=Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. |journal=Mol. Cell. Biol. |volume=21 |issue= 20 |pages= 6782-95 |year= 2001 |pmid= 11564863 |doi= 10.1128/MCB.21.20.6782-6795.2001 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | author=Cavusoglu N, Brand M, Tora L, Van Dorsselaer A |title=Novel subunits of the TATA binding protein free TAFII-containing transcription complex identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry following one-dimensional gel electrophoresis. |journal=Proteomics |volume=3 |issue= 2 |pages= 217-23 |year= 2003 |pmid= 12601814 |doi= 10.1002/pmic.200390030 }}
*{{cite journal  | author=Liu X, Tesfai J, Evrard YA, ''et al.'' |title=c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. |journal=J. Biol. Chem. |volume=278 |issue= 22 |pages= 20405-12 |year= 2003 |pmid= 12660246 |doi= 10.1074/jbc.M211795200 }}
}}
{{refend}}


{{protein-stub}}
|-
| Insulin || bgcolor="#488ED3"|Normal
 
|-
| ''[[Haematology]]'' 6 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Homozygous viability at P14 || bgcolor="#C40000"|Abnormal
 
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
 
|-
| Body weight || bgcolor="#488ED3"|Normal
 
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
 
|-
| Grip strength || bgcolor="#488ED3"|Normal
 
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
 
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
 
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
 
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
 
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
 
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
 
|-
| Eye morphology || bgcolor="#488ED3"|Normal
 
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
 
|-
| ''[[Haematology]]'' 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Peripheral blood leukocytes 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Heart weight || bgcolor="#488ED3"|Normal
 
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal
 
|-
| Cytotoxic T Cell Function || bgcolor="#488ED3"|Normal
 
|-
| Spleen Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Mesenteric Lymph Node Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Bone Marrow Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Epidermal Immune Composition || bgcolor="#488ED3"|Normal
 
|-
| Trichuris Challenge || bgcolor="#488ED3"|Normal
 
|-
|}
{{clear|left}}
 
== References ==
{{reflist}}
 
== Further reading ==
{{Refbegin | 2}}
* {{cite journal | vauthors = Yu J, Madison JM, Mundlos S, Winston F, Olsen BR | title = Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H) | journal = Genomics | volume = 53 | issue = 1 | pages = 90–6 | date = Oct 1998 | pmid = 9787080 | doi = 10.1006/geno.1998.5500 }}
* {{cite journal | vauthors = Vassilev A, Yamauchi J, Kotani T, Prives C, Avantaggiati ML, Qin J, Nakatani Y | title = The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily | journal = Molecular Cell | volume = 2 | issue = 6 | pages = 869–75 | date = Dec 1998 | pmid = 9885574 | doi = 10.1016/S1097-2765(00)80301-9 }}
* {{cite journal | vauthors = Brand M, Yamamoto K, Staub A, Tora L | title = Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction | journal = The Journal of Biological Chemistry | volume = 274 | issue = 26 | pages = 18285–9 | date = Jun 1999 | pmid = 10373431 | doi = 10.1074/jbc.274.26.18285 }}
* {{cite journal | vauthors = Speek M | title = Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes | journal = Molecular and Cellular Biology | volume = 21 | issue = 6 | pages = 1973–85 | date = Mar 2001 | pmid = 11238933 | pmc = 86790 | doi = 10.1128/MCB.21.6.1973-1985.2001 }}
* {{cite journal | vauthors = Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L | title = UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation | journal = The EMBO Journal | volume = 20 | issue = 12 | pages = 3187–96 | date = Jun 2001 | pmid = 11406595 | pmc = 150203 | doi = 10.1093/emboj/20.12.3187 }}
* {{cite journal | vauthors = Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG | title = Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo | journal = Molecular and Cellular Biology | volume = 21 | issue = 20 | pages = 6782–95 | date = Oct 2001 | pmid = 11564863 | pmc = 99856 | doi = 10.1128/MCB.21.20.6782-6795.2001 }}
* {{cite journal | vauthors = Cavusoglu N, Brand M, Tora L, Van Dorsselaer A | title = Novel subunits of the TATA binding protein free TAFII-containing transcription complex identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry following one-dimensional gel electrophoresis | journal = Proteomics | volume = 3 | issue = 2 | pages = 217–23 | date = Feb 2003 | pmid = 12601814 | doi = 10.1002/pmic.200390030 }}
* {{cite journal | vauthors = Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E | title = c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation | journal = The Journal of Biological Chemistry | volume = 278 | issue = 22 | pages = 20405–12 | date = May 2003 | pmid = 12660246 | pmc = 4031917 | doi = 10.1074/jbc.M211795200 }}
{{Refend}}

Latest revision as of 02:15, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Transcription initiation protein SPT3 homolog is a protein that in humans is encoded by the SUPT3H gene.[1][2][3]

Interactions

Transcription initiation protein SPT3 homolog has been shown to interact with GCN5L2,[4][5] TAF6L,[5] TADA3L,[5] TAF5L,[5] SF3B3,[5] SUPT7L,[5] Myc,[6] TAF9,[5] Transformation/transcription domain-associated protein,[5] TAF12,[5] TAF10,[4][5] TAF4[4] and DDB1.[5]

Model organisms

Model organisms have been used in the study of SUPT3H function. A conditional knockout mouse line called Supt3tm1a(EUCOMM)Hmgu was generated at the Wellcome Trust Sanger Institute.[7] Male and female animals underwent a standardized phenotypic screen[8] to determine the effects of deletion.[9][10][11][12] Additional screens performed: - In-depth immunological phenotyping[13]

References

  1. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (Jul 1998). "Histone-like TAFs within the PCAF histone acetylase complex". Cell. 94 (1): 35–44. doi:10.1016/S0092-8674(00)81219-2. PMID 9674425.
  2. Martinez E, Kundu TK, Fu J, Roeder RG (Sep 1998). "A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID". The Journal of Biological Chemistry. 273 (37): 23781–5. doi:10.1074/jbc.273.37.23781. PMID 9726987.
  3. "Entrez Gene: SUPT3H suppressor of Ty 3 homolog (S. cerevisiae)".
  4. 4.0 4.1 4.2 Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (Jun 2001). "UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation". The EMBO Journal. 20 (12): 3187–96. doi:10.1093/emboj/20.12.3187. PMC 150203. PMID 11406595.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (Oct 2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo". Molecular and Cellular Biology. 21 (20): 6782–95. doi:10.1128/MCB.21.20.6782-6795.2001. PMC 99856. PMID 11564863.
  6. Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E (May 2003). "c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation". The Journal of Biological Chemistry. 278 (22): 20405–12. doi:10.1074/jbc.M211795200. PMC 4031917. PMID 12660246.
  7. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  8. 8.0 8.1 "International Mouse Phenotyping Consortium".
  9. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  12. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  13. 13.0 13.1 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading