Thalassemia classification

Jump to navigation Jump to search

Thalassemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thalassemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thalassemia classification On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thalassemia classification

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thalassemia classification

CDC on Thalassemia classification

Thalassemia classification in the news

Blogs on Thalassemia classification

Directions to Hospitals Treating Thalassemia

Risk calculators and risk factors for Thalassemia classification

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Shyam Patel [2]

Overview

Classification

The thalassemias are classified according to which chain of the hemoglobin molecule is affected (see hemoglobin for a description of the chains). In α thalassemias, production of the α globin chain is affected, while in β thalassemia production of the β globin chain is affected.

Alpha-thalassemia

Alpha-thalassemias are caused by decreased production of alpha-globin chains.

Loss of 1 alpha chains

Loss of 2 alpha chains

Loss of 3 alpha chains (HbH)

This condition occurs when alpha-globin chain synthesis is reduced to 25% or less.[1] This is also know as hemoglobin H (HbH). HbH consistes of tetramers of beta chains (beta-4).[1] These beta-glbin chain tetramers form because of insufficient alpha-globin chain synthesis. Symptoms typically include severe hemolytic anemia, but not death. This condition is less severe than Hb Barts.

Loss of 4 alpha chains (Hb Barts)

Complete loss of alpha-globin chain production results in a severe, clinically incapacitating anemia with production of 4 gamma-globin chains as a tetramer. The clinical syndrome is hydrops fetalis. The tetramer of 4 gamma-globin chains is also known as hemoglobin Barts (Hb Barts). This condition is nor compatible with life. There can be severe intrauterine anemia.

Beta-thalassemia

Beta0 thalassemia (B0 thalassemia)

Heterozygotes that have B0 thalassemia have high [[red blood cell] counts. Red blood cells in beta-thalassemia 0 heterozygotes are hypochromic and microcytic. This disease is characterized by unbalanced or unequal globin chain synthesis and increased HbA2 (which consists of two alpha-globin chains and two delta-globin chains).[2]

Beta+ thalassemia (B+ thalassemia)

Heterozygotes that have B+ thalassemia have high [[red blood cell] counts. Red blood cells in B+ thalassemia are hypochromic and microcytic. This disease is characterized by unbalanced or unequal globin chain synthesis and increased HbA2 (which consists of two alpha-globin chains and two delta-globin chains).[2]

Hemoglobin E (HbE)

This is a beta-globin variant that is found in high prevalence in certain Asian countries.[3] It is characterized by a point mutation in beta-globin at codon 26, in which GAG is converted to AAG, converting glutamic acid to lysine. This amino acid substitution results in altered messenger RNA processing. Given the high prevalence of beta-thalassemia in Asian countries, some patients can have HbBE disease, in which one allele harbors a beta-globin defect and the other harbors the beta-globin variant.[3] The rate of production of hemoglobin for patients with HbE disease is slightly decreased, so the thalassemia is mild. In patients with HbE, this hemoglobin variant constitutes 25-30% of the total hemoglobin. HbE has mild sensitivity to oxidative stress. This hemoglobin variant is unstable at high temperatures, so patients with HbE may experience hemolysis in the heat.

Hemoglobin E/beta-thalassemia (HbE-beta)

Given the high prevalence of beta-thalassemia in Asian countries and the relative abundance of HbE amongst Asians, some patients can have HbBE disease, in which one allele harbors a beta-globin defect and the other harbors the beta-globin variant.[3]

https://www.ncbi.nlm.nih.gov/corecgi/tileshop/tileshop.fcgi?p=PMC3&id=749520&s=31&r=3&c=5

Hemoglobin C (HbC)

This is a hemoglobin variant characterized by a point mutation at the 6th codon of the beta-globin chain. It results in conversion of glutamic acid to lysine. Note that this is distinct from hemoglobin E, in which a similar amino acid substitution occurs in codon 26.

References

  1. 1.0 1.1 Higgs DR (2013). "The molecular basis of α-thalassemia". Cold Spring Harb Perspect Med. 3 (1): a011718. doi:10.1101/cshperspect.a011718. PMC 3530043. PMID 23284078.
  2. 2.0 2.1 Cao A, Kan YW (2013). "The prevention of thalassemia". Cold Spring Harb Perspect Med. 3 (2): a011775. doi:10.1101/cshperspect.a011775. PMC 3552345. PMID 23378598.
  3. 3.0 3.1 3.2 Fucharoen S, Weatherall DJ (2012). "The hemoglobin E thalassemias". Cold Spring Harb Perspect Med. 2 (8). doi:10.1101/cshperspect.a011734. PMC 3405827. PMID 22908199.

Template:WH Template:WS