Primary hyperaldosteronism laboratory findings

Revision as of 16:46, 20 July 2017 by Skazmi (talk | contribs)
Jump to navigation Jump to search

Primary hyperaldosteronism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Primary Hyperaldosteronism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

CT scan Findings

MRI Findings

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Case Studies

Case #1

Primary hyperaldosteronism laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Primary hyperaldosteronism laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Primary hyperaldosteronism laboratory findings

CDC on Primary hyperaldosteronism laboratory findings

Primary hyperaldosteronism laboratory findings in the news

Blogs on Primary hyperaldosteronism laboratory findings

Directions to Hospitals Treating Conn syndrome

Risk calculators and risk factors for Primary hyperaldosteronism laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Laboratory findings consistent with the diagnosis of primary hyperaldosteronism include plasma aldosterone to renin activity ratio (PAC/PRA) of >30[1], serum aldosterone value of > 6 ng / dl and simultaneous PRA levels < than 1.0 ng / ml / hour after fludrocortisone supression test, or a plasma aldosterone more than 10 ng / dl on saline infusion test or on oral sodium loading test, the post-test 24-hour urinary aldosterone excretion less than 12 μg / day and a urinary sodium excretion of more than 200 mmol / day. the adrenal venous sampling test is gold standard for subtype classification of primary hyperaldosteronism.

Laboratory Findings

Plasma Aldosterone to Renin Ratio (PAC/PRA)

Protocol

  • Drugs that affect the renin–angiotensin-aldosterone axis should be stopped before testing, such as: beta-blockers, ACE inhibitors, ARBs (angiotensin receptor blockers), renin inhibitors, dihydropyridine calcium channel blockers, and central alpha2-agonists, for about fourteen days, and spironolactone, eplerenone, amiloride, and triamterene, and loop diuretics for about twenty eight days.
  • The test should be conducted between 8 a.m. and 10 a. m. The patient is advised to stay upright for 2 hours prior to testing, and then sit for about 10 minutes before testing.[2]

Interpretation

  • Primary hyperaldosteronism (Conn's syndrome) is associated with an increased aldosterone levels (PAC) in plasma along with suppressed renin concentration (PRA) due to feedback inhibition of aldosterone on renin levels in the plasma.
  • A PAC/PRA ratio of >30 is a strong evidence of primary hyperladosteronism and value >50 is considered diagnostic in the presence of resistant hypertension, hypokalemia and metabolic alkalosis.[1][3][4][5][6][7][8]

Confirmatory Tests

After preliminary testing for primary hyperaldosteronism via PAC/PRA ratio, any one of the following tests may be performed in order to confirm the diagnosis:

1. Fludrocortisone suppression test (FST) 

  • This is the gold standard test for confirmation of primary hyperaldosteronism.
  • Patient is given a synthetic mineralocorticoid (9-[alpha]-fludrocortisone acetate 0.1 mg every six hours) and sodium chloride [slow-release sodium 30 mmol (1.75 g) three times daily].
  • Plasma aldosterone level is measured in the a.m. after four days of administration.
  • A value of > 6 ng / dl and simultaneous PRA levels < than 1.0 ng / ml / hour, confirm primary hyperaldosteronism.

2. Intravenous saline load test (SLT) 

  • Patient is infused with two liters of NaCl 0.9% for fours hours.
  • Plasma aldosterone more than 10 ng / dl is confirmatory, normally aldosterone would be suppressed to below 5 ng / dl.

3. Oral sodium loading test 

  • This test has a sensitivity and specificity of >90%
  • Patient is fed a high sodium diet, of approximately 218 mmol / day, for three days.
  • On the third day, a 24-hour urine sample is collected.
  • Normal suppression is defined as post-test 24-hour urinary aldosterone excretion less than 12 μg / day and a urinary sodium excretion of more than 200 mmol / day.

4. Captopril challenge test 

  • Positive test for primary hyperaldosteronism is defined as a PAC / PRA > 30, measured two hours after the administration of 25 mg or 50 mg of captopril with patients in the sitting position.
  • Reserved for patients with reduced cardiac or renal function.

Less Common Tests

  • Frusemide upright posture test
  • 24-hour urinary aldosterone
  • Losartan test

Subtype Classification

Once the diagnosis of primary hyperaldosteronism is confirmed, a subtype classification is required as the management may vary based on the etiology.

Tests useful in assessing subtypes are:

1. Computed Tomography (CT) 

  • A high-resolution CT (HRCT) scan with contrast, has a high sensitivity (78%) and specificity (75%) for detection of adrenal masses (inluding aldosterone producing adenomas-APAs)
  • CT scan is best when used for adrenal adenomas > 2cm but accuracy decreases if the mass is < 1cm.
  • A unilateral lesion exceeding 4 cm suggests possible carcinoma
  • Moreover, it cannot distinguish between a functional APA and a non-secreting adrenal adenoma (incidentaloma).

2. Magnetic Resonance Imaging (MRI)

  • Sensitivity of 70 to 100% in detecting APA, depending on the size of the lesion, being greatest for lesions > 2 cm.
  • Limitations are similar to that of CT scan.

3. Adrenal venous sampling (AVS) 

  • Gold standard test for subtype classification.
  • It has a high sensitivity (95%) and specificity (100%) for the detection of unilateral aldosterone excess but is highly expertise dependent.
  • AVS can be performed using any of the three protocols:
    • (a) Unstimulated sequential or simultaneous bilateral AVS
    • (b) Unstimulated sequential or simultaneous bilateral AVS followed by bolus cosyntropin-stimulated sequential or simultaneous bilateral AVS
    • (c) Continuous cosyntropin infusion with sequential bilateral AVS.
  • Plasma aldosterone collected from the adrenal veins is corrected to its respective plasma cortisol, measured as a ratio (PAC / cortisol ratio)
  • A gradient of > 4:1, points towards unilateral aldosterone secreting adenoma and < 3 : 1 suggests bilateral adrenal hyperplasia.

4. Posture stimulation test

  • May be used when AVS is equivocal.
  • It is based on the principal that PAC in patients with aldosterone producing adenoma (APA) there is a diurnal variation and is relatively unchanged by changes in the angiotensin II levels being under ACTH control, whereas, bilateral adrenal hyperplasia (IHA) is affected heavily by a small change in the angiotensin II, due to standing.

5. Iodocholesterol scintigraphy (NP-59 scan)

  • 6 beta- 131I iodomethyl-19-norcholesterol (NP-59), was introduced in 1977 for the diagnosis for primary aldosteronism.
  • The NP-59 scan is performed with dexamethasone suppression.
  • It is not very useful in identifying micro adenomas of the adrenals (<1.5cm).

6. 18-Hydroxycorticosterone levels

  • Less accurate than other tests.
  • Hydroxylation of corticosterone leads to the formation of 18-hydroxycorticosterone.
  • Historically, it was used to differentiate APA from bilateral adrenal hyperplasia.
  • Supine plasma 18-hydroxycorticosterone levels > 100 ng/dl at 8 a.m., suggest aldosterone producing adenoma (APA).

References

  1. 1.0 1.1 "The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline: The Journal of Clinical Endocrinology & Metabolism: Vol 101, No 5".
  2. Stowasser M, Gordon RD, Rutherford JC, Nikwan NZ, Daunt N, Slater GJ (2001). "Diagnosis and management of primary aldosteronism". J Renin Angiotensin Aldosterone Syst. 2 (3): 156–69. doi:10.3317/jraas.2001.022. PMID 11881117.
  3. Horsley MG, Bailie GR (1988). "Effectiveness of theophylline monitoring by the use of serum assays". J Clin Pharm Ther. 13 (5): 359–64. PMID 3230101.
  4. Ríos MC, Izquierdo A, Sotelo M, Honnorat E, Rodríguez Cuimbra S, Catay E, Popescu BM (2011). "[Aldosterone/renin ratio in the diagnosis of primary aldosteronism]". Medicina (B Aires) (in Spanish; Castilian). 71 (6): 525–30. PMID 22167725.
  5. Pilz S, Kienreich K, Gaksch M, Grübler M, Verheyen N, Bersuch LA, Schmid J, Drechsler C, Ritz E, Moosbrugger A, Stepan V, Pieber TR, Meinitzer A, März W, Tomaschitz A (2014). "Aldosterone to active Renin ratio as screening test for primary aldosteronism: reproducibility and influence of orthostasis and salt loading". Horm. Metab. Res. 46 (6): 427–32. doi:10.1055/s-0034-1367033. PMID 24526370.
  6. "The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline: The Journal of Clinical Endocrinology & Metabolism: Vol 101, No 5".
  7. Doi SA, Abalkhail S, Al-Qudhaiby MM, Al-Humood K, Hafez MF, Al-Shoumer KA (2006). "Optimal use and interpretation of the aldosterone renin ratio to detect aldosterone excess in hypertension". J Hum Hypertens. 20 (7): 482–9. doi:10.1038/sj.jhh.1002024. PMID 16617310.
  8. Pilz S, Kienreich K, Gaksch M, Grübler M, Verheyen N, Bersuch LA, Schmid J, Drechsler C, Ritz E, Moosbrugger A, Stepan V, Pieber TR, Meinitzer A, März W, Tomaschitz A (2014). "Aldosterone to active Renin ratio as screening test for primary aldosteronism: reproducibility and influence of orthostasis and salt loading". Horm. Metab. Res. 46 (6): 427–32. doi:10.1055/s-0034-1367033. PMID 24526370.

Template:WH Template:WS