Pneumoconiosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
 
(38 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Pneumoconiosis}}
{{Pneumoconiosis}}
{{CMG}}; {{AE}} {{ Karol Gema Hernández}}
{{CMG}}; {{AE}} {{Karol Gema Hernández}}, [[User:Dushka|Dushka Riaz, MD]]


==Overview==
==Overview==
Pneumoconiosis is an [[interstitial lung disease]] caused by the accumulation of different dust particles in the alveolar space. As the particles accumulate, the body's elimination mechanisms begin to fail, resulting in activation of chemotactic factors that exacerbate the inflammatory response, and subsequently leading to [[fibrosis]].
Pneumoconiosis is an [[interstitial lung disease]] caused by the accumulation of different [[dust]] particles in the [[alveolar]] space. As the particles accumulate, the body's elimination mechanisms begin to fail, resulting in activation of [[chemotactic]] factors that exacerbate the [[inflammatory response]], and subsequently leading to [[fibrosis]]. <ref name="pmid23022777">{{cite journal| author=Farzaneh MR, Jamshidiha F, Kowsarian S| title=Inhalational lung disease. | journal=Int J Occup Environ Med | year= 2010 | volume= 1 | issue= 1 | pages= 11-20 | pmid=23022777 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23022777  }} </ref>


==Pathophysiology==
==Pathophysiology==
The pathogenesis of pneumoconiosis starts with the inhalation of mineral, metallic or dust particles.
===Pathogenesis===
The pathogenesis of [[pneumoconiosis]] starts with the inhalation of mineral, metallic or [[dust]] particles.  
The most common particles that cause pneumoconiosis are:
The most common particles that cause pneumoconiosis are:


*[[Asbestos]]
*[[Asbestos]] <ref name="pmid32467338">{{cite journal| author=Yang M, Wang D, Gan S, Fan L, Cheng M, Yu L | display-authors=etal| title=Increasing incidence of asbestosis worldwide, 1990-2017: results from the Global Burden of Disease study 2017. | journal=Thorax | year= 2020 | volume= 75 | issue= 9 | pages= 798-800 | pmid=32467338 | doi=10.1136/thoraxjnl-2020-214822 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32467338  }} </ref>


*[[Silica]] (quartz, cristobalite, or tridymite silica polymorphs)
*[[Silica]] (quartz, cristobalite, coesite or tridymite silica polymorphs)
**Structural differences between the polymorphs of silica, are important because of the different degrees of biological reactivity they present, making some of them more [[toxic]] than others. The biological reactivity makes [[quartz]] more toxic, followed by tridymite, cristobalite, coesite, and finally stishovite. <ref name="pmid10931786">{{cite journal| author=Castranova V, Vallyathan V| title=Silicosis and coal workers' pneumoconiosis. | journal=Environ Health Perspect | year= 2000 | volume= 108 Suppl 4 | issue=  | pages= 675-84 | pmid=10931786 | doi= | pmc=PMC1637684 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10931786  }} </ref> <ref name="pmid6273058">{{cite journal| author=Lapp NL| title=Lung disease secondary to inhalation of nonfibrous minerals. | journal=Clin Chest Med | year= 1981 | volume= 2 | issue= 2 | pages= 219-33 | pmid=6273058 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6273058  }} </ref> <ref name="pmid11876495">{{cite journal| author=Merget R, Bauer T, Küpper HU, Philippou S, Bauer HD, Breitstadt R | display-authors=etal| title=Health hazards due to the inhalation of amorphous silica. | journal=Arch Toxicol | year= 2002 | volume= 75 | issue= 11-12 | pages= 625-34 | pmid=11876495 | doi=10.1007/s002040100266 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11876495  }} </ref>


*[[Coal]]
*[[Coal]]


Other dust particles may also lead to pneumoconiosis, such as hydrated magnesium silicate, hydrous aluminium silicate, bauxite, cobalt, beryllium and iron.
Other dust particles may also lead to [[pneumoconiosis]], such as hydrated [[magnesium]] silicate, hydrous [[Aluminium|aluminum]] silicate, [[bauxite]], [[cobalt]], [[beryllium]] and [[iron]]. <ref name="pmid23708110">{{cite journal| author=Cullinan P, Reid P| title=Pneumoconiosis. | journal=Prim Care Respir J | year= 2013 | volume= 22 | issue= 2 | pages= 249-52 | pmid=23708110 | doi=10.4104/pcrj.2013.00055 | pmc=6442808 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23708110  }} </ref> <ref name="pmid32310362">{{cite journal| author=| title=StatPearls | journal= | year= 2021 | volume=  | issue=  | pages=  | pmid=32310362 | doi= | pmc= | url= }} </ref>


Shown below is a table summarizing the dust exposure associated with pneumocociosis.
===Biological Reactivity of Different Dust Particles===
Each [[dust]] particle has a different degree of biological reactivity. The [[dust]] particles ultimately cause [[inflammation]], [[fibrosis]] and finally, irreversible lung disease. <ref name="pmid23022777">{{cite journal| author=Farzaneh MR, Jamshidiha F, Kowsarian S| title=Inhalational lung disease. | journal=Int J Occup Environ Med | year= 2010 | volume= 1 | issue= 1 | pages= 11-20 | pmid=23022777 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23022777  }} </ref> This variability is due to properties in the surface of the particles. In the case of [[silica]], there are two theories explaining their biological reactivity. One of them is that [[silica]] is a [[hydrogen donor]], whereas biological [[Macromolecule|macromolecules]] are [[hydrogen]] acceptors, creating strong [[hydrogen]] bonds that contribute to the damage. The other theory is that at a pH of 7.0 <ref name="pmid10931786">{{cite journal| author=Castranova V, Vallyathan V| title=Silicosis and coal workers' pneumoconiosis. | journal=Environ Health Perspect | year= 2000 | volume= 108 Suppl 4 | issue=  | pages= 675-84 | pmid=10931786 | doi= | pmc=PMC1637684 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10931786  }} </ref>, [[silica]] is negatively charged, and therefore attracting [[alveolar]] [[Macrophage|macrophages]], and activating the generation of [[reactive oxygen species]] and [[cytokines]].
 
Shown below is a table summarizing the dust exposure associated with [[pneumoconiosis]].


{| class="Dust Exposure Associated with Pneumoconiosis" border="1"
{| class="Dust Exposure Associated with Pneumoconiosis" border="1"


|-
|-
! Disease
!Disease
! Dust
!Dust
|-
|-
| Coal workers’ pneumoconiosis
|Coal workers’ [[pneumoconiosis]]
| Coal dust
|Coal [[dust]]
|-
|-
| Silicosis
|[[Silicosis]]
| Silica
|[[Silica]]
|-
|-
| Asbestosis
|[[Asbestosis]]
| Asbestos
|[[Asbestos]]
|-
|-
| Talcosis
|[[Talcosis]]
| Hydrated aluminium silicate
|Hydrated aluminium silicate
|-
|-
| Kaolin- induced pneumoconiosis
|Kaolin- induced pneumoconiosis
| Hydrous aluminum silicate
|Hydrous aluminum silicate
|-
|-
| Mixed dust pneumoconiosis
|Mixed dust pneumoconiosis
| Coal dust, smoke from fires, and silicates
|Coal dust, smoke from fires, and silicates
|-
|-
| Aluminum- induced pneumoconiosis
|Aluminum- induced pneumoconiosis
| Bauxite (Al2O3)
|[[Bauxite]] (Al2O3)
|-
|-
| Berylliosis
|[[Berylliosis]]
| Beryllium
|[[Beryllium]]
|-
|-
| Silicosiderosis
|[[Silicosiderosis]]
| Silica and iron
|[[Silica]] and [[iron]]
|-
|-
| Hard- metal disease (giant cell pneumonitis)
|Hard- metal disease ([[giant cell]] pneumonitis)
| Cobalt
|[[Cobalt]]
|}
|}


When particles reach the distal [[lung]], the [[Mucociliary clearance|mucociliary]] and [[lymphatic]] system take care of their elimination. [[Dust]] fibers must be less than 3 μm in diameter in order to penetrate the distal [[lung]]. Fibers greater than 5 μm are [[Phagocytosis|phagocytosed]] incompletely and retained in [[tissues]]. When particles increase in number, [[macrophages]] are activated to engulf those particles. [[Reticulin]] is then secreted by [[fibroblasts]] to entrap [[macrophages]], as an attempt to control the excess of [[dust]] particles. <ref name="pmid29773095">{{cite journal| author=Li J, Yao W, Hou JY, Zhang L, Bao L, Chen HT | display-authors=etal| title=The Role of Fibrocyte in the Pathogenesis of Silicosis. | journal=Biomed Environ Sci | year= 2018 | volume= 31 | issue= 4 | pages= 311-316 | pmid=29773095 | doi=10.3967/bes2018.040 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29773095  }} </ref>
The physiology of [[macrophage]] activation is subject to several theories. The [[Macrophage|macrophages]] are mainly derived from peripheral [[blood]] [[monocytes]] and, from local replication. The recruitment of [[monocytes]] from peripheral blood occurs in response to several chemotactic factors. Boitelle et al <ref name="pmid9072984">{{cite journal| author=Boitelle A, Gosset P, Copin MC, Vanhee D, Marquette CH, Wallaert B et al.| title=MCP-1 secretion in lung from nonsmoking patients with coal worker's pneumoconiosis. | journal=Eur Respir J | year= 1997 | volume= 10 | issue= 3 | pages= 557-62 | pmid=9072984 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9072984  }} </ref> suggest that one of the most potent [[chemotactic]] factors for peripheral [[blood]] [[Monocyte|monocytes]] is monocyte chemoattractant protein- 1 (MCP- 1), suggesting its role in chronic [[macrophage]] inflammation. [[TNFα]] activates MCP- 1 expression. MCP-1 is a 76 [[amino acid]] peptide that activates [[monocytes]], and also increases its cytostatic activity and the expression of [[monocyte]] adhesion molecules such as CD11c/CD18 and CD11b/CD18.
As exposure continues, the elimination system begins to fail, leading to release of [[reactive oxygen species]]. These in turn exacerbates the inflammatory response, with the release of more [[Cytokine|cytokines]], such as [[TNF]] and [[Interleukin|interleukins]], which subsequently lead to fibrogenesis.


When dust reaches the distal lung, the mucocilliary and lympathic system take care of the elimination of the particles. Dust fibers must be less than 3 μm in diameter in order to penetrate the distal lung. Fibers greater than 5 μm are phagocytosed incompletely and retained in tissues. When particles increase in number, macrophages are activated to engulf those particles. Reticulin is then secreted by fibroblasts to entrap macrophages, as an attempt to control the excess of dust particles.
The determinants for the rate of [[disease]] progression are the accumulative [[dose]]; that is based in duration and intensity of exposure, the [[fiber]] type and individual susceptibility.


The physiology of macrophage activation is subject to several theories. The macrophages are mainly derived by peripheral blood monocytes and, from local replication. The recruitment of monocytes from peripheral blood occurs in response to several chemotactic factors. Boitelle et al <ref name="pmid9072984">{{cite journal| author=Boitelle A, Gosset P, Copin MC, Vanhee D, Marquette CH, Wallaert B et al.| title=MCP-1 secretion in lung from nonsmoking patients with coal worker's pneumoconiosis. | journal=Eur Respir J | year= 1997 | volume= 10 | issue= 3 | pages= 557-62 | pmid=9072984 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9072984 }} </ref> suggest that one of the most potent chemotactic factors for peripheral blood monocytes is monocyte chemoattractant protein- 1 (MCP- 1), suggesting its role in chronic macrophage inflammation. TNFα activates MCP- 1 expression. MCP-1 is a 76 amino acid peptide that activates monocytes, and also increases its cytostatic activity, and the expression of monocyte adhesion molecules such as CD11c/CD18 and CD11b/CD18.
The underlying [[pathogenic]] mechanisms that lead to [[pulmonary fibrosis]] in [[pneumoconiosis]] remain unclear. Some studies in [[bronchoalveolar lavage]] made by Vanhée et al <ref name="pmid7656959">{{cite journal| author=Vanhée D, Gosset P, Boitelle A, Wallaert B, Tonnel AB| title=Cytokines and cytokine network in silicosis and coal workers' pneumoconiosis. | journal=Eur Respir J | year= 1995 | volume= 8 | issue= 5 | pages= 834-42 | pmid=7656959 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7656959 }} </ref> suggest a potential protective effect of [[TGF- β]] on the development of [[pulmonary fibrosis]]. The alveolar [[macrophages]] in coal miners with massive [[fibrosis]], secreted two main profibrotic factors; [[platelet-derived growth factor]] (PDGF) and [[Insulin-like growth factor-I|insulin-like growth factor]]- 1 (IGF-1), whereas, the patients with simple [[pneumoconiosis]] secreted transforming- growth factor- β ([[TGF beta|TGF]]- β). This suggested a potential protective effect of [[TGF beta|TGF]]- β against the development of [[pulmonary fibrosis]].


As exposure continues, the elimination system begins to fail, leading to release of reactive oxygen species. These in turn exacerbates the inflammatory response, with the release of more cytokines, such as TNF and interleukins, which subsequently lead to fibrogenesis.
The risk for [[pneumoconiosis]] among constructions workers is evident, but Tjoe et al concluded there is not a clear-cut relationship between exposure and body’s response. This is complex due to the [[heterogeneity]] in exposure levels, as well as [[dust]] composition and the possible modification of [[toxicity]] by other factors present in [[dust]].<ref>Tjoe E, Borm P, Hohr D and Heederik D (2002)."Pneumoconiosis and Exposure to Quartz-containing Dust in the Construction Industry". British Occupational Hygiene Society. Vol. 46, Supplement 1, pp. 71–75. </ref>


The determinants for the rate of disease progression are the accumulative dose; that is based in duration and intensity of exposure, the fiber type and individual susceptibility.
Shown below is an image depicting a [[lung]] affected with [[pneumoconiosis]].


The underlying pathogenic mechanisms that lead to pulmonary fibrosis in pneumoconiosis remain unclear. Some studies in bronchoalveolar lavage made by Vanhée et al <ref name="pmid7656959">{{cite journal| author=Vanhée D, Gosset P, Boitelle A, Wallaert B, Tonnel AB| title=Cytokines and cytokine network in silicosis and coal workers' pneumoconiosis. | journal=Eur Respir J | year= 1995 | volume= 8 | issue= 5 | pages= 834-42 | pmid=7656959 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7656959  }} </ref> suggest a potential protective effect of TGF- β on the development of pulmonary fibrosis. The alveolar macrophages in coal miners with massive fibrosis, secreted two main profibrotic factors; platelet-derived growth factor (PDGF) and insulin-like growth factor- 1 (IGF-1), whereas, the patients with simple pneumoconiosis secreted transforming- growth factor- β (TGF- β). This suggested a potential protective effect of TGF- β on the development of pulmonary fibrosis.
[[Image:Blacklung.jpg|200px|Pneumoconiosis lung]]


The risk for pneumoconiosis among constructions workers is evident, but Tjoe et al concluded there is not a clear-cut relationship between exposure and body’s response. This is hard due to the heterogeneity in exposure levels, as well as dust composition and the possible modification of toxicity by other factors present in dust.
==Genetics==
[[Pneumoconiosis]] is caused by [[Environmental epidemiology|environmental]] exposure. However, [[Acute (medicine)|acute]] and more severe forms of the [[disease]] do develop in more genetically susceptible people. For example,  
a study found [[polymorphism]] in IL‐1RA (+ 2018) may increase the risk for the development of [[silicosis]]. <ref name="pmidhttps://doi.org/10.1002/1097-0274(200103)39:3<286:">{{cite journal| author=Schmoldt A, Benthe HF, Haberland G| title=Digitoxin metabolism by rat liver microsomes. | journal=Biochem Pharmacol | year= 1975 | volume= 24 | issue= 17 | pages= 1639-41 | pmid=https://doi.org/10.1002/1097-0274(200103)39:3<286: | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10  }} </ref>


Shown below is an image depicting a lung affected with pneumoconiosis.
==Associated Conditions==
Conditions associated with [[pneumoconiosis]] include: <ref name="pmid10741774">{{cite journal| author=Fujimura N| title=Pathology and pathophysiology of pneumoconiosis. | journal=Curr Opin Pulm Med | year= 2000 | volume= 6 | issue= 2 | pages= 140-4 | pmid=10741774 | doi=10.1097/00063198-200003000-00010 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10741774  }} </ref>


[[Image:Blacklung.jpg|200px|Pneumoconiosis lung]]
*[[Asbestosis]] can cause [[malignant mesothelioma]] and [[bronchogenic carcinoma]].
*[[Silicosis]] can exacerbate [[carcinoma]] and [[tuberculosis]].
*Coal worker's [[pneumoconiosis]] can increase the risk of [[tuberculosis]].
 
==Gross Pathology==
On gross [[pathology]], pleural [[plaques]] are characteristic findings of [[asbestosis]] as well as [[Pulmonary fibrosis|diffuse interstitial pulmonary fibrosis]] in [[reticular]] formation. Coal worker's pneumoconiosis and [[silicosis]] both show small interstitial [[nodules]] in the upper [[lung]]. All [[pneumoconiosis]] will present with chronic [[fibrosis]]. [[Silicosis]] may include eggshell [[dystrophic calcification]]. <ref name="pmid16418244">{{cite journal| author=Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS| title=Pneumoconiosis: comparison of imaging and pathologic findings. | journal=Radiographics | year= 2006 | volume= 26 | issue= 1 | pages= 59-77 | pmid=16418244 | doi=10.1148/rg.261055070 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16418244  }} </ref>
 
==Microscopic Pathology==
On microscopic [[histopathological]] analysis, anthrocytes, or dust-laden [[macrophages]] are characteristic findings of coal worker's [[pneumoconiosis]]. Onion skin lesions with concentrically arranged fibers and a central [[acellular]] area are typical of [[silicosis]]. In [[asbestosis]], [[asbestosis]] bodies appear. Finally, [[Ferruginous bodies|ferruginous]] bodies are typical for [[inhalation]] of [[Dust|inorganic dust]] with deposition of [[ferrous]] materials. <ref name="pmid16418244">{{cite journal| author=Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS| title=Pneumoconiosis: comparison of imaging and pathologic findings. | journal=Radiographics | year= 2006 | volume= 26 | issue= 1 | pages= 59-77 | pmid=16418244 | doi=10.1148/rg.261055070 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16418244  }} </ref> <ref name="pmid10741774">{{cite journal| author=Fujimura N| title=Pathology and pathophysiology of pneumoconiosis. | journal=Curr Opin Pulm Med | year= 2000 | volume= 6 | issue= 2 | pages= 140-4 | pmid=10741774 | doi=10.1097/00063198-200003000-00010 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10741774  }} </ref> <ref name="pmid26513613">{{cite journal| author=Cohen RA, Petsonk EL, Rose C, Young B, Regier M, Najmuddin A | display-authors=etal| title=Lung Pathology in U.S. Coal Workers with Rapidly Progressive Pneumoconiosis Implicates Silica and Silicates. | journal=Am J Respir Crit Care Med | year= 2016 | volume= 193 | issue= 6 | pages= 673-80 | pmid=26513613 | doi=10.1164/rccm.201505-1014OC | pmc=4824937 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26513613  }} </ref>


==References==
==References==

Latest revision as of 19:25, 23 April 2021

Pneumoconiosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pneumoconiosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pneumoconiosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pneumoconiosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pneumoconiosis pathophysiology

CDC on Pneumoconiosis pathophysiology

Pneumoconiosis pathophysiology in the news

Blogs on Pneumoconiosis pathophysiology

Directions to Hospitals Treating Pneumoconiosis

Risk calculators and risk factors for Pneumoconiosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Karol Gema Hernández, M.D. [2], Dushka Riaz, MD

Overview

Pneumoconiosis is an interstitial lung disease caused by the accumulation of different dust particles in the alveolar space. As the particles accumulate, the body's elimination mechanisms begin to fail, resulting in activation of chemotactic factors that exacerbate the inflammatory response, and subsequently leading to fibrosis. [1]

Pathophysiology

Pathogenesis

The pathogenesis of pneumoconiosis starts with the inhalation of mineral, metallic or dust particles. The most common particles that cause pneumoconiosis are:

  • Silica (quartz, cristobalite, coesite or tridymite silica polymorphs)
    • Structural differences between the polymorphs of silica, are important because of the different degrees of biological reactivity they present, making some of them more toxic than others. The biological reactivity makes quartz more toxic, followed by tridymite, cristobalite, coesite, and finally stishovite. [3] [4] [5]

Other dust particles may also lead to pneumoconiosis, such as hydrated magnesium silicate, hydrous aluminum silicate, bauxite, cobalt, beryllium and iron. [6] [7]

Biological Reactivity of Different Dust Particles

Each dust particle has a different degree of biological reactivity. The dust particles ultimately cause inflammation, fibrosis and finally, irreversible lung disease. [1] This variability is due to properties in the surface of the particles. In the case of silica, there are two theories explaining their biological reactivity. One of them is that silica is a hydrogen donor, whereas biological macromolecules are hydrogen acceptors, creating strong hydrogen bonds that contribute to the damage. The other theory is that at a pH of 7.0 [3], silica is negatively charged, and therefore attracting alveolar macrophages, and activating the generation of reactive oxygen species and cytokines.

Shown below is a table summarizing the dust exposure associated with pneumoconiosis.

Disease Dust
Coal workers’ pneumoconiosis Coal dust
Silicosis Silica
Asbestosis Asbestos
Talcosis Hydrated aluminium silicate
Kaolin- induced pneumoconiosis Hydrous aluminum silicate
Mixed dust pneumoconiosis Coal dust, smoke from fires, and silicates
Aluminum- induced pneumoconiosis Bauxite (Al2O3)
Berylliosis Beryllium
Silicosiderosis Silica and iron
Hard- metal disease (giant cell pneumonitis) Cobalt

When particles reach the distal lung, the mucociliary and lymphatic system take care of their elimination. Dust fibers must be less than 3 μm in diameter in order to penetrate the distal lung. Fibers greater than 5 μm are phagocytosed incompletely and retained in tissues. When particles increase in number, macrophages are activated to engulf those particles. Reticulin is then secreted by fibroblasts to entrap macrophages, as an attempt to control the excess of dust particles. [8]

The physiology of macrophage activation is subject to several theories. The macrophages are mainly derived from peripheral blood monocytes and, from local replication. The recruitment of monocytes from peripheral blood occurs in response to several chemotactic factors. Boitelle et al [9] suggest that one of the most potent chemotactic factors for peripheral blood monocytes is monocyte chemoattractant protein- 1 (MCP- 1), suggesting its role in chronic macrophage inflammation. TNFα activates MCP- 1 expression. MCP-1 is a 76 amino acid peptide that activates monocytes, and also increases its cytostatic activity and the expression of monocyte adhesion molecules such as CD11c/CD18 and CD11b/CD18.

As exposure continues, the elimination system begins to fail, leading to release of reactive oxygen species. These in turn exacerbates the inflammatory response, with the release of more cytokines, such as TNF and interleukins, which subsequently lead to fibrogenesis.

The determinants for the rate of disease progression are the accumulative dose; that is based in duration and intensity of exposure, the fiber type and individual susceptibility.

The underlying pathogenic mechanisms that lead to pulmonary fibrosis in pneumoconiosis remain unclear. Some studies in bronchoalveolar lavage made by Vanhée et al [10] suggest a potential protective effect of TGF- β on the development of pulmonary fibrosis. The alveolar macrophages in coal miners with massive fibrosis, secreted two main profibrotic factors; platelet-derived growth factor (PDGF) and insulin-like growth factor- 1 (IGF-1), whereas, the patients with simple pneumoconiosis secreted transforming- growth factor- β (TGF- β). This suggested a potential protective effect of TGF- β against the development of pulmonary fibrosis.

The risk for pneumoconiosis among constructions workers is evident, but Tjoe et al concluded there is not a clear-cut relationship between exposure and body’s response. This is complex due to the heterogeneity in exposure levels, as well as dust composition and the possible modification of toxicity by other factors present in dust.[11]

Shown below is an image depicting a lung affected with pneumoconiosis.

Pneumoconiosis lung

Genetics

Pneumoconiosis is caused by environmental exposure. However, acute and more severe forms of the disease do develop in more genetically susceptible people. For example, a study found polymorphism in IL‐1RA (+ 2018) may increase the risk for the development of silicosis. [12]

Associated Conditions

Conditions associated with pneumoconiosis include: [13]

Gross Pathology

On gross pathology, pleural plaques are characteristic findings of asbestosis as well as diffuse interstitial pulmonary fibrosis in reticular formation. Coal worker's pneumoconiosis and silicosis both show small interstitial nodules in the upper lung. All pneumoconiosis will present with chronic fibrosis. Silicosis may include eggshell dystrophic calcification. [14]

Microscopic Pathology

On microscopic histopathological analysis, anthrocytes, or dust-laden macrophages are characteristic findings of coal worker's pneumoconiosis. Onion skin lesions with concentrically arranged fibers and a central acellular area are typical of silicosis. In asbestosis, asbestosis bodies appear. Finally, ferruginous bodies are typical for inhalation of inorganic dust with deposition of ferrous materials. [14] [13] [15]

References

  1. 1.0 1.1 Farzaneh MR, Jamshidiha F, Kowsarian S (2010). "Inhalational lung disease". Int J Occup Environ Med. 1 (1): 11–20. PMID 23022777.
  2. Yang M, Wang D, Gan S, Fan L, Cheng M, Yu L; et al. (2020). "Increasing incidence of asbestosis worldwide, 1990-2017: results from the Global Burden of Disease study 2017". Thorax. 75 (9): 798–800. doi:10.1136/thoraxjnl-2020-214822. PMID 32467338 Check |pmid= value (help).
  3. 3.0 3.1 Castranova V, Vallyathan V (2000). "Silicosis and coal workers' pneumoconiosis". Environ Health Perspect. 108 Suppl 4: 675–84. PMC 1637684. PMID 10931786.
  4. Lapp NL (1981). "Lung disease secondary to inhalation of nonfibrous minerals". Clin Chest Med. 2 (2): 219–33. PMID 6273058.
  5. Merget R, Bauer T, Küpper HU, Philippou S, Bauer HD, Breitstadt R; et al. (2002). "Health hazards due to the inhalation of amorphous silica". Arch Toxicol. 75 (11–12): 625–34. doi:10.1007/s002040100266. PMID 11876495.
  6. Cullinan P, Reid P (2013). "Pneumoconiosis". Prim Care Respir J. 22 (2): 249–52. doi:10.4104/pcrj.2013.00055. PMC 6442808. PMID 23708110.
  7. "StatPearls". 2021. PMID 32310362 Check |pmid= value (help).
  8. Li J, Yao W, Hou JY, Zhang L, Bao L, Chen HT; et al. (2018). "The Role of Fibrocyte in the Pathogenesis of Silicosis". Biomed Environ Sci. 31 (4): 311–316. doi:10.3967/bes2018.040. PMID 29773095.
  9. Boitelle A, Gosset P, Copin MC, Vanhee D, Marquette CH, Wallaert B; et al. (1997). "MCP-1 secretion in lung from nonsmoking patients with coal worker's pneumoconiosis". Eur Respir J. 10 (3): 557–62. PMID 9072984.
  10. Vanhée D, Gosset P, Boitelle A, Wallaert B, Tonnel AB (1995). "Cytokines and cytokine network in silicosis and coal workers' pneumoconiosis". Eur Respir J. 8 (5): 834–42. PMID 7656959.
  11. Tjoe E, Borm P, Hohr D and Heederik D (2002)."Pneumoconiosis and Exposure to Quartz-containing Dust in the Construction Industry". British Occupational Hygiene Society. Vol. 46, Supplement 1, pp. 71–75.
  12. Schmoldt A, Benthe HF, Haberland G (1975). "Digitoxin metabolism by rat liver microsomes". Biochem Pharmacol. 24 (17): 1639–41. PMID <286: https://doi.org/10.1002/1097-0274(200103)39:3<286: Check |pmid= value (help).
  13. 13.0 13.1 Fujimura N (2000). "Pathology and pathophysiology of pneumoconiosis". Curr Opin Pulm Med. 6 (2): 140–4. doi:10.1097/00063198-200003000-00010. PMID 10741774.
  14. 14.0 14.1 Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS (2006). "Pneumoconiosis: comparison of imaging and pathologic findings". Radiographics. 26 (1): 59–77. doi:10.1148/rg.261055070. PMID 16418244.
  15. Cohen RA, Petsonk EL, Rose C, Young B, Regier M, Najmuddin A; et al. (2016). "Lung Pathology in U.S. Coal Workers with Rapidly Progressive Pneumoconiosis Implicates Silica and Silicates". Am J Respir Crit Care Med. 193 (6): 673–80. doi:10.1164/rccm.201505-1014OC. PMC 4824937. PMID 26513613.

Template:WH Template:WS