Nosocomial infection: Difference between revisions

Jump to navigation Jump to search
m (Changes made per Mahshid's request)
 
(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
'''For patient information click [[{{PAGENAME}} (patient information)|here]]'''
{{Infobox disease
{{Infobox disease
  | Name          = Nosocomial infection
  | Name          = Nosocomial infection
  | Image          = Contaminated surfaces increase cross-transmission.jpg  
  | Image          = Contaminated surfaces increase cross-transmission.jpg  
  | Caption        = Contaminated surfaces increase cross-transmission
  | Caption        = Contaminated surfaces increase cross-transmission
| DiseasesDB    =
}}
| ICD10          = {{ICD10|Y|95||y|90}}
{{Nosocomial infection}}
| ICD9          =
 
| OMIM          =
| MedlinePlus    =
| MeshID        =
}}{{Wiktionary|nosocomial}}
{{SI}}
{{CMG}}
{{CMG}}
==Overview==
A '''nosocomial infection''', also known as a '''hospital-acquired infection''' or '''HAI''', is an infection whose development is favoured by a hospital environment, such as one acquired by a patient during a hospital visit or one developing among hospital staff. Such infections include fungal and bacterial infections and are aggravated by the reduced resistance of individual patients.<ref>{{cite web|title=Nosocomial Infection|url=http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t62.e6134|work=A Dictionary of Nursing|publisher=Oxford Reference Online|accessdate=2011-08-15|year=2008}}</ref>
In the [[United States]], the [[Centers for Disease Control and Prevention]] estimated roughly 1.7 million hospital-associated infections, from all types of [[microorganism]]s, including [[bacteria]], combined, cause or contribute to 99,000 deaths each year.<ref name=NYT/> In [[Europe]], where hospital surveys have been conducted, the category of [[Gram-negative]] infections are estimated to account for two-thirds of the 25,000 deaths each year. Nosocomial infections can cause severe [[pneumonia]] and infections of the [[Urinary tract infection|urinary tract]], [[blood infection|bloodstream]] and other parts of the body. Many types are difficult to attack with [[antibiotics]], and [[antibiotic resistance]] is spreading to [[Gram-negative]] bacteria that can infect people outside the hospital.<ref name=NYT/>
== Known nosocomial infections ==
* [[Ventilator-associated pneumonia]]
* ''[[Staphylococcus aureus]]''
* [[Methicillin Resistant Staphylococcus Aureus|Methicillin resistant ''Staphylococcus aureus'']]
* ''[[Candida albicans]]''
* ''[[Pseudomonas aeruginosa]]''
* ''[[Acinetobacter baumannii]]''
* ''[[Stenotrophomonas maltophilia]]''
* ''[[Clostridium difficile]]''
* [[Tuberculosis]]
* [[Urinary tract infection]]
* [[Hospital-acquired pneumonia]]
* [[Gastroenteritis]]
* [[Vancomycin-resistant Enterococcus|Vancomycin-resistant ''Enterococcus'']]
* [[Legionnaires' disease]]
== Epidemiology ==
Nosocomial infections are commonly transmitted when hospital officials become complacent and personnel do not practice correct hygiene regularly. Also, increased use of [[outpatient]] treatment in recent decades means that a greater percentage of people who are hospitalized today are likely to be seriously ill with more weakened immune systems than in the past. Moreover, some [[medical procedure]]s bypass the body's natural protective barriers. Since medical staff move from patient to patient, the staff themselves serve as a means for spreading pathogens. Essentially, the staff act as vectors.
===Categories and treatment===
Among the categories of bacteria most known to infect patients are the category [[MRSA]] (resistant strain of ''S. aureus''), member of [[Gram-positive bacteria]] and ''[[Acinetobacter]]'' (''A. baumannii''), which is [[Gram-negative bacteria|Gram-negative]]. While antibiotic drugs to treat diseases caused by Gram-positive MRSA are available, few effective drugs are available for ''Acinetobacter''. ''Acinetobacter'' bacteria are evolving and becoming immune to existing antibiotics, so in many cases, [[polymyxin]]-type antibacterials need to be used. "In many respects it’s far worse than MRSA," said a specialist at [[Case Western Reserve University]].<ref name=NYT/>
Another growing disease, especially prevalent in [[New York City]] hospitals, is the drug-resistant, Gram-negative ''[[Klebsiella pneumoniae]]''. An estimated more than 20% of the ''Klebsiella'' infections in [[Brooklyn]] hospitals "are now resistant to virtually all modern antibiotics, and those supergerms are now spreading worldwide.<ref name=NYT>Pollack, Andrew. [http://www.nytimes.com/2010/02/27/business/27germ.html?em=&adxnnl=1&adxnnlx=1267412412-yP2bfl/3pu4+g34XVmluJA "Rising Threat of Infections Unfazed by Antibiotics"] New York Times, Feb. 27, 2010</ref>
The bacteria, classified as Gram-negative because of their reaction to the [[Gram stain]] test, can cause severe [[pneumonia]] and infections of the [[urinary tract]], bloodstream, and other parts of the body. Their cell structures make them more difficult to attack with antibiotics than Gram-positive organisms like MRSA. In some cases, antibiotic resistance is spreading to Gram-negative bacteria that can infect people outside the hospital. "For Gram-positives we need better drugs; for Gram-negatives we need any drugs," said Dr. Brad Spellberg, an infectious-disease specialist at [[Harbor-UCLA Medical Center]], and the author of ''Rising Plague'', a book about drug-resistant pathogens.<ref name=NYT/>
One-third of nosocomial infections are considered preventable. The CDC estimates 2 million people in the United States are infected annually by hospital-acquired infections, resulting in 20,000 deaths.<ref>{{cite journal |author=Ricks, Delthia |title=Germ Warfare |journal=Ms. Magazine |pages=43–5 |year=2007 |url=http://www.msmagazine.com/spring2007/germwarfare.asp}}</ref> The most common nosocomial infections are of the [[urinary tract]], surgical site and various [[pneumonia]]s.<ref>{{cite journal |author=Klevens RM, Edwards JR, Richards CL, ''et al.'' |title=Estimating health care-associated infections and deaths in U.S. hospitals, 2002 |journal=Public Health Rep |volume=122 |issue=2 |pages=160–6 |year=2007 |pmid=17357358 |pmc=1820440 }}</ref>
===Epidemiology===
The methods used differ from country to country (definitions used, type of nosocomial infections covered, health units surveyed, inclusion or exclusion of imported infections, etc.), so the international comparisons of nosocomial infection rates should be made with the utmost care.
====United States====
The [[Centers for Disease Control and Prevention]] (CDC) estimated roughly 1.7 million hospital-associated infections, from all types of bacteria combined, cause or contribute to 99,000 deaths each year.<ref>Klevens, R Monina et al. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820440 "Estimating Health Care-associated Infections and Deaths in U.S. Hospitals, 2002."] Public Health Reports 122.2 (2007): 160–166.</ref> Other estimates indicate 10%, or 2 million, patients a year become infected, with the annual cost ranging from $4.5 billion to $11 billion. In the USA, the most frequent type of infection hospitalwide is urinary tract infection (36%), followed by surgical site infection (20%), and bloodstream infection and pneumonia (both 11%).<ref name=NYT/>
====France====
Estimates ranged from 6.7% in 1990 to 7.4% (patients may have several infections).<ref>Quenon JL, Gottot S, Duneton P, Lariven S, Carlet J, Régnier B, Brücker G. Enquête nationale de prévalence des infections nosocomiales en France : Hôpital Propre (octobre 1990). BEH n° 39/1993.</ref> At national level, prevalence among patients in health care facilities was 6.7% in 1996,<ref>Comité technique des infections nosocomiales (CTIN), Cellule infections nosocomiales, CClin Est, CClin Ouest, CClin Paris-Nord, CClin Sud-Est, CClin Sud-Ouest, avec la participation de 830 établissements de santé. [http://www.invs.sante.fr/beh/1997/9736/beh_36_1997.pdf Enquête nationale de prévalence des infections nosocomiales,1996], BEH n° 36/1997, 2 sept. 1997, 4 pp.. [http://www.invs.sante.fr/beh/1997/9736/index.html Résumé].</ref> 5.9% in 2001<ref>Lepoutre A, Branger B, Garreau N, Boulétreau A, Ayzac L, Carbonne A, Maugat S, Gayet S, Hommel C, Parneix P, Tran B pour le Réseau d’alerte, d’investigation et de surveillance des infections nosocomiales (Raisin). [http://www.invs.sante.fr/publications/2005/snmi/pdf/infections_noso_enquete.pdf Deuxième enquête nationale de prévalence des infections nosocomiales, France, 2001], Surveillance nationale des maladies infectieuses, 2001-2003. Institut de veille sanitaire, sept. 2005, 11 pp. [http://www.invs.sante.fr/publications/2005/snmi/infections_noso_enquete.html Résumé].</ref> and 5.0% in 2006.<ref>Institut de veille sanitaire ''Enquête nationale de prévalence des infections nosocomiales, France, juin 2006'', [http://www.invs.sante.fr/publications/2009/enquete_prevalence_infections_nosocomiales/enquete_prevalence_infections_nosocomiales_vol1.pdf Volume 1 – Méthodes, résultats, perspectives], mars 2009, ii + 81 pp. [http://www.invs.sante.fr/publications/2009/enquete_prevalence_infections_nosocomiales/enquete_prevalence_infections_nosocomiales_vol2.pdf Volume 2 – Annexes], mars 2009, ii + 91 pp. [http://www.invs.sante.fr/publications/2009/enquete_prevalence_infections_nosocomiales/enquete_prevalence_infections_nosocomiales_plaq.pdf Synthèse des résultats], Mars 2009, 11 pp.</ref> The rates for nosocomial infections were 7.6% in 1996, 6.4% in 2001 and 5.4% in 2006.
In 2006, the most common infection sites were [[urinary tract infection]]s (30,3%), [[pneumopathy]] (14,7%), infections of surgery site (14,2%). Infections of the [[skin]] and [[mucous membrane]] (10,2%), other respiratory infections (6,8%) and bacterial infections / blood poisoning (6,4%).<ref>Institut de veille sanitaire ''Enquête nationale de prévalence des infections nosocomiales, France, juin 2006'', Vol. 1, Tableau 31, p. 24.</ref> The rates among adult patients in [[intensive care]] were 13,5% in 2004, 14,6% in 2005, 14,1% in 2006 and 14.4% in 2007.<ref>Réseau REA-Raisin [http://www.invs.sante.fr/publications/2009/rea_raisin_resultats_2007/rea_raisin_resultats_2007.pdf « Surveillance des infections nosocomiales en réanimation adulte. France, résultats 2007 »], Institut de veille sanitaire, Sept. 2009, ii + 60 pp.</ref>
Nosocomial infections are estimated to make patients stay in the hospital four to five additional days. Around 2004-2005, about 9,000 people died each year with a nosocomial infection, of which about 4,200 would have survived without this infection.<ref>Vasselle, Alain [http://www.senat.fr/rap/r05-421/r05-4211.pdf « Rapport sur la politique de lutte contre les infections nosocomiales »], Office parlementaire d'évaluation des politiques de santé, juin 2006, 290 pp. (III.5. Quelle est l’estimation de la mortalité attribuable aux IN ?).</ref>
====Italy====
Since 2000, estimates show about a 6.7% infection rate, i.e. between {{formatnum:450000}} and {{formatnum:700000}} patients, which caused between {{formatnum:4500}} and {{formatnum:7000}} deaths.<ref>''L'Italie scandalisée par "l'hôpital de l'horreur"'', Éric Jozsef, ''Libération'', January 17, 2007 {{fr}}</ref> A survey in Lombardy gave a rate of 4.9% of patients in 2000.<ref>Liziolia A, Privitera G, Alliata E, Antonietta Banfi EM, Boselli L, Panceri ML, Perna MC, Porretta AD, Santini MG, Carreri V. Prevalence of nosocomial infections in Italy: result from the Lombardy survey in 2000. J Hosp Infect 2003;54:141-8.</ref>
====United Kingdom====
Estimates show a 10% infection rate,<ref>Aodhán S Breathnacha, Nosocomial infections, Medicine, 2005: 33, 22-26</ref> with 8.2% estimated in 2006.<ref>Press release for [http://www.his.org.uk/content_display.cfm?cit_id=461 The Third Prevalence Survey of Healthcare-associated Infections in Acute Hospitals]. Hospital Infection Society, Londres, 27/10/06.</ref>
====Switzerland====
Estimates range between 2 and 14%.<ref>[http://www.swisshandhygiene.ch/swisshandhygiene/presse/_b/contentFiles/301006_Facts_sheet_F.doc Facts sheet - Swiss Hand Hygiene Campaign.] (.doc)</ref> A national survey gave a rate of 7.2% in 2004.<ref>Sax H, Pittet D pour le comité de rédaction de Swiss-NOSO et le réseau Swiss-NOSO Surveillance. [http://www.chuv.ch/swiss-noso/f121a1.htm Résultats de l’enquête nationale de prévalence des infections nosocomiales de 2004 (snip04)]. Swiss-NOSO 2005;12(1):1-4.</ref>
====Finland====
Rate were estimated at 8.5% of patients in 2005.<ref>Lyytikainen O, Kanerva M, Agthe N, Mottonen T and the Finish Prevalence Survey Study Group. National Prevalence Survey on Nosocomial Infections in Finnish Acute Care Hospitals, 2005. 10th Epiet Scientific Seminar. Mahon, Menorca, Spain, 13–15 October 2005 [Poster].</ref>
=== Transmission ===
The drug-resistant Gram-negative bacteria, for the most part, threaten only hospitalized patients whose immune systems are weak. They can survive for a long time on surfaces in the hospital and enter the body through wounds, catheters, and ventilators.<ref name=NYT/>
{| class="wikitable"
|+Main routes of transmission
!Route
!Description
|-
|Contact transmission
|The most important and frequent mode of transmission of nosocomial infections is by direct contact.
|-
|Droplet transmission
|Transmission occurs when droplets containing microbes from the infected person are propelled a short distance through the air and deposited on the host's body; droplets are generated from the source person mainly by coughing, sneezing, and talking, and during the performance of certain procedures, such as bronchoscopy.
|-
|[[Airborne transmission]]
|Dissemination can be either airborne droplet nuclei (small-particle residue {5 [[micrometre|µm]] or smaller in size} of evaporated droplets containing microorganisms that remain suspended in the air for long periods of time) or dust particles containing the infectious agent. Microorganisms carried in this manner can be dispersed widely by air currents and may become inhaled by a susceptible host within the same room or over a longer distance from the source patient, depending on environmental factors; therefore, special air-handling and ventilation are required to prevent airborne transmission. Microorganisms transmitted by airborne transmission include ''[[Legionella]]'', ''[[Mycobacterium tuberculosis]]'' and the [[rubeola]] and [[varicella]] viruses.
|-
|Common vehicle transmission
|This applies to microorganisms transmitted to the host by contaminated items, such as food, water, medications, devices, and equipment.
|-
|Vector borne transmission
|This occurs when vectors such as mosquitoes, flies, rats, and other vermin transmit microorganisms.
|}
Contact transmission is divided into two subgroups: direct-contact transmission and indirect-contact transmission.
{| class="wikitable"
|+Routes of contact transmission
!Route
!Description
|-
|Direct-contact transmission
|This involves a direct body surface-to-body surface contact and physical transfer of microorganisms between a susceptible host and an infected or colonized person, such as when a person turns a patient, gives a patient a bath, or performs other [[health care|patient-care]] activities that require direct personal contact. Direct-contact transmission also can occur between two patients, with one serving as the source of the infectious microorganisms and the other as a susceptible host.
|-
|Indirect-contact transmission
|This involves contact of a susceptible host with a contaminated intermediate object, usually inanimate, such as contaminated instruments, [[Hypodermic needle|needle]]s, or dressings, or contaminated gloves that are not changed between patients. In addition, the improper use of saline flush syringes, vials, and bags has been implicated in disease transmission in the US, even when healthcare workers had access to gloves, disposable needles, intravenous devices, and flushes.<ref name=salineflush>{{cite journal
|author=Jain SK, Persaud D, Perl TM, ''et al.'' |title=Nosocomial malaria and saline flush |journal=Emerging Infect. Dis. |volume=11 |issue=7 |pages=1097–9 |year=2005 |month=July |pmid=16022788 |url=http://www.cdc.gov/ncidod/EID/vol11no07/05-0092.htm}}</ref>
|}
===Risk factors===
Factors predisposing a patient to infection can broadly be divided into three areas:
*People in hospitals are usually already in a 'poor state of health', impairing their defense against bacteria – advanced age or [[premature birth]] along with [[immunodeficiency]] (due to drugs, illness, or irradiation) present a general risk, while other diseases can present specific risks - for instance, [[chronic obstructive pulmonary disease]] can increase chances of respiratory tract infection.
*Invasive devices, for instance [[intubation]] tubes, [[catheters]], [[surgical drain]]s, and [[tracheostomy]] tubes, all bypass the body’s natural lines of defence against [[pathogens]] and provide an easy route for infection. Patients already colonised on admission are instantly put at greater risk when they undergo invasive procedures.
*Patients' treatments can leave them vulnerable to infection – [[immunosuppression]] and [[antacid]] treatment undermine the body’s defences, while [[antimicrobial]] therapy (removing competitive [[flora]] and only leaving resistant organisms) and recurrent [[blood]] [[transfusions]] have also been identified as risk factors.
==Prevention==
Hospitals have sanitation protocols regarding [[scrubs (clothing)|uniforms]], equipment [[Sterilization (microbiology)|sterilization]], washing, and other preventive measures. Thorough [[hand washing]] and/or use of [[Hand sanitizer|alcohol rubs]] by all medical personnel before and after each patient contact is one of the most effective ways to combat nosocomial infections.<ref>{{cite journal |author=McBryde ES, Bradley LC, Whitby M, McElwain DL |title=An investigation of contact transmission of methicillin-resistant Staphylococcus aureus |journal=J. Hosp. Infect. |volume=58 |issue=2 |pages=104–8 |year=2004 |month=October |pmid=15474180 |doi=10.1016/j.jhin.2004.06.010 }}</ref> More careful use of [[antimicrobial]] agents, such as [[antibiotic]]s, is also considered vital.<ref>{{cite book |title=Making Health Care Safer: A Critical Analysis of Patient Safety Practices |author=Lautenbach E |chapter=Chapter 14. Impact of Changes in Antibiotic Use Practices on Nosocomial Infections and Antimicrobial Resistance—''Clostridium difficile'' and Vancomycin-resistant Enterococcus (VRE) |url=http://www.ahrq.gov/clinic/ptsafety/ |editor=Markowitz AJ |year=2001 |publisher=Agency for Healthcare Research and Quality |chapterurl= http://www.ahrq.gov/clinic/ptsafety/chap14.htm}}</ref>
Despite sanitation protocol, patients cannot be entirely isolated from infectious agents. Furthermore, patients are often prescribed antibiotics and other antimicrobial drugs to help treat illness; this may increase the [[natural selection|selection pressure]] for the emergence of resistant strains.
===Sterilization===
Sterilization goes  further than just sanitizing. It kills all microorganisms on equipment and surfaces through exposure to chemicals, ionizing radiation, dry heat, or steam under pressure.
===Isolation===
Isolation precautions are designed to prevent transmission of microorganisms by common routes in hospitals. Because agent and host factors are more difficult to control, interruption of transfer of microorganisms is directed primarily at transmission.
===Handwashing and gloving===
Handwashing frequently is called the single most important measure to reduce the risks of transmitting [[skin flora|skin microorganism]]s from one person to another or from one site to another on the same patient. Washing hands as promptly and thoroughly as possible between patient contacts and after contact with [[blood]], [[body fluid]]s, [[secretion]]s, [[excretion]]s, and equipment or articles contaminated by them is an important component of infection control and isolation precautions.
The spread of nosocomial infections, among immunocompromised patients is connected with health care workers' hand contamination in almost 40% of cases, and is a challenging problem in the modern hospitals. The best way for workers to overcome this problem is conducting correct hand-hygiene procedures; this is why the WHO launched in 2005 the GLOBAL Patient Safety Challenge.<ref>World Alliance for patient safety. WHO Guidelines on Hand Hygiene in Health Care. http://www.who.int/rpc/guidelines/9789241597906/en/. 2009</ref>
Two categories of micro-organisms can be present on health care workers' hands: transient flora and resident flora. The first is represented by the micro-organisms taken by workers from the environment, and the bacteria in it are capable of surviving on the human skin and sometimes to grow. The second group is represented by the permanent micro-organisms living on the skin surface (on the stratum corneum or immediately under it). They are capable of surviving on the human skin and to grow freely on it. They have low pathogenicity and infection rate, and they create a kind of protection from the colonization from other more pathogenic bacteria. The skin of workers is colonized by 3.9 x 10<sup>4</sup> – 4.6 x 10<sup>6</sup> cfu/cm<sup>2</sup>. The microbes comprising the resident flora are: ''Staphylococcus epidermidis'', ''S. hominis'', and ''Microccocus'', ''Propionibacterium, Corynebacterium, Dermobacterium'', and ''Pitosporum'' spp., while in the transitional could be found ''S. aureus'', and ''Klebsiella pneumoniae'', and ''Acinetobacter, Enterobacter'' and ''Candida'' spp. The goal of hand hygiene is to eliminate the transient flora with a careful and proper performance of hand washing, using different kinds of soap, (normal and antiseptic), and alcohol-based gels. The main problems found in the practice of hand hygiene is connected with the lack of available sinks and time-consuming performance of hand washing. An easy way to resolve this problem could be the use of alcohol-based hand rubs, because of faster application compared to correct hand washing.<ref>Hugonnet S, Perneger TV, Pittet D. Alcohol based hand rub improves compliance with hand hygiene in intensive care units. Arch Intern med 2002; 162: 1037-1043.</ref>
Although handwashing may seem like a simple process, it is often performed incorrectly. Healthcare settings must continuously remind practitioners and visitors on the proper procedure to comply with responsible handwashing. Simple programs such as [http://henrythehand.com Henry the Hand], and the use of handwashing signals can assist healthcare facilities in the prevention of nosocomial infections.
All visitors must follow the same procedures as hospital staff to adequately control the spread of infections. Visitors and healthcare personnel are equally to blame in transmitting infections.{{Citation needed|date=June 2011}} Moreover, multidrug-resistant infections can leave the hospital and become part of the community [[flora (microbiology)|flora]] if steps are not taken to stop this transmission.
In addition to handwashing, [[medical gloves|gloves]] play an important role in reducing the risks of transmission of microorganisms. Gloves are worn for three important reasons in hospitals. First, they are worn to provide a protective barrier and to prevent gross contamination of the hands when touching blood, body fluids, secretions, excretions, mucous membranes, and nonintact skin. In the [[USA]], the [[Occupational Safety and Health Administration]] has mandated wearing gloves to reduce the risk of [[bloodborne pathogen]] infections.<ref>{{cite web|url=http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=16265&p_table=FEDERAL_REGISTER |title=Occupational Exposure to Bloodborne Pathogens;Needlestick and Other Sharps Injuries; Final Rule. - 66:5317-5325 |publisher=Osha.gov |date= |accessdate=2011-07-11}}</ref> Second, gloves are worn to reduce the likelihood microorganisms present on the hands of personnel will be transmitted to patients during invasive or other patient-care procedures that involve touching a patient's mucous membranes and nonintact skin. Third, they are worn to reduce the likelihood the hands of personnel contaminated with micro-organisms from a patient or a [[fomite]] can be transmitted to another patient. In this situation, gloves must be changed between patient contacts, and hands should be washed after gloves are removed.
Wearing gloves does not replace the need for handwashing, because gloves may have small, inapparent defects or may be torn during use, and hands can become contaminated during removal of gloves. Failure to change gloves between patient contacts is an infection control hazard.
===Surface sanitation===
Sanitizing surfaces is an often overlooked, yet crucial, component of breaking the cycle of infection in health care environments. Modern sanitizing methods such as [[NAV-CO2]] have been effective against gastroenteritis, MRSA, and influenza agents. Use of [[hydrogen peroxide]] vapor has been clinically proven to reduce infection rates and risk of acquisition. Hydrogen peroxide is effective against endospore-forming bacteria, such as ''Clostridium difficile'', where alcohol has been shown to be ineffective.<ref>{{cite journal |author=Otter JA, French GL |title=Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor |journal=J. Clin. Microbiol. |volume=47 |issue=1 |pages=205–7 |year=2009 |month=January |pmid=18971364 |doi=10.1128/JCM.02004-08 |pmc=2620839 }}
</ref>


===Antimicrobial surfaces===
{{SK}} Hospital-acquired infection; HAI
[[Micro-organisms]] are known to survive on inanimate ‘touch’ surfaces for extended periods of time.<ref>Wilks, S.A., Michels, H., Keevil, C.W., 2005, The Survival of Escherichia Coli O157 on a Range of Metal Surfaces, International Journal of Food Microbiology, Vol. 105, pp. 445–454. and Michels, H.T. (2006), Anti-Microbial Characteristics of Copper, ASTM Standardization News, October, pp. 28-31</ref> This can be especially troublesome in hospital environments where patients with [[immunodeficiencies]] are at enhanced risk for contracting nosocomial infections.


Touch surfaces commonly found in hospital rooms, such as bed rails, call buttons, touch plates, chairs, door handles, light switches, grab rails, intravenous poles, dispensers (alcohol gel, paper towel, soap), dressing trolleys, and counter and table tops are known to be contaminated with ''[[Staphylococcus]]'', [[MRSA]] (one of the most virulent strains of antibiotic-resistant bacteria) and [[Vancomycin-resistant Enterococcus|vancomycin-resistant ''Enterococcus'']] (VRE).<ref>U.S. Department of Defense-funded clinical trials, as presented at the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) in Washington, D.C., October 28, 2008</ref> Objects in closest proximity to patients have the highest levels of  MRSA and VRE. This is why touch surfaces in hospital rooms can serve as sources, or reservoirs, for the spread of bacteria from the hands of healthcare workers and visitors to patients.
==[[Nosocomial infection overview|Overview]]==


{{main|Antimicrobial copper touch surfaces}}
==[[Nosocomial infection classification|Classification]]==
{{main|Antimicrobial properties of copper}}


Copper alloy surfaces have intrinsic properties to destroy a wide range of micro-organisms. In the interest of protecting public health, especially in heathcare environments with their susceptible patient populations, an abundance of peer-reviewed antimicrobial efficacy studies have been and continue to be conducted around the world regarding copper’s efficacy to destroy ''[[Escherichia coli|E. coli]]'' O157:H7, [[methicillin]]-resistant ''[[Staphylococcus aureus]]'' (MRSA), ''[[Staphylococcus]]'', ''[[Clostridium difficile]]'', [[influenza A virus]], [[Adenoviridae|adenovirus]], and [[Fungus|fungi]].<ref>[http://coppertouchsurfaces.org/antimicrobial/bacteria/index.html Copper Touch Surfaces]</ref>
==[[Nosocomial infection pathophysiology|Pathophysiology]]==


Much of this antimicrobial efficacy work has been or is currently being conducted at the [[University of Southampton]] and [[Northumbria University]] ([[United Kingdom]]), [[University of Stellenbosch]] ([[South Africa]]), [[Panjab University]] ([[India]]), [[University of Chile]] ([[Chile]]), [[Kitasato University]] ([[Japan]]), the Instituto do Mar<ref>http://www.imar.pt</ref> and [[University of Coimbra]] ([[Portugal]]), and the [[University of Nebraska]] and [[Arizona State University]] ([[USA]]). A summary of the antimicrobial copper touch surfaces clinical trials to date is available.<ref>[[Antimicrobial copper-alloy touch surfaces#Clinical trials of antimicrobial copper alloy touch surfaces in healthcare facilities]]</ref>
==[[Nosocomial infection causes|Causes]]==


In 2007, [[U.S. Department of Defense]]’s Telemedicine and Advanced Technologies Research Center began to study the antimicrobial properties of copper alloys in a multisite clinical hospital trial conducted at the [[Memorial Sloan-Kettering Cancer Center]] (New York City), the [[Medical University of South Carolina]], and the Ralph H. Johnson VA Medical Center (South Carolina).<ref>http://www.biomedcentral.com/content/pdf/1753-6561-5-s6-o53.pdf and http://www.coppertouchsurfaces.org</ref> Commonly touched items, such as bed rails, over-the-bed tray tables, chair arms, nurse's call buttons, IV poles, etc. were retrofitted with antimicrobial copper alloys in certain patient rooms (i.e., the “coppered” rooms) in the [[intensive care unit]]s (ICUs). Early results disclosed in 2011 indicated the coppered rooms demonstrated a 97% reduction in surface [[pathogens]] versus the control rooms. This reduction is the same level achieved by “terminal” cleaning regimens conducted after patients vacated their rooms. Furthermore, of critical importance to health care professionals, the preliminary results indicated the patients in the coppered ICUs had a 40.4% lower risk of contracting a hospital-acquired infection versus patients in the control ICUs.<ref>http://www.biomedcentral.com/content/pdf/1753-6561-5-s6-o53.pdf</ref><ref>http://www.coppertouchsurfaces.org/press/releases/20110701.html</ref><ref>World Health Organization’s 1st International Conference on Prevention and Infection Control (ICPIC) in Geneva, Switzerland on July 1st, 2011</ref> The US Department of Defense investigation contract, which is ongoing, will also evaluate the effectiveness of copper alloy touch surfaces to prevent the transfer of microbes to patients and the transfer of microbes from patients to touch surfaces, as well as the potential efficacy of copper alloy-based components to improve [[indoor air quality]].
==[[Nosocomial infection differential diagnosis|Differentiating Nosocomial Infection from other Diseases]]==


In the US, the [[Environmental Protection Agency]] (EPA) regulates the registration of antimicrobial products. After extensive antimicrobial testing according to the agency’s stringent test protocols, 355 [[copper alloys]], including many brasses, were found to kill more than 99.9% of MRSA, ''E. coli'' O157:H7, ''[[Pseudomonas aeruginosa]]'', ''S. aureus'', ''[[Enterobacter aerogenes]]'', and VRE within two hours of contact.<ref>EPA registers copper-containing alloy products, May 2008, http://www.epa.gov/opp00001/factsheets/copper-alloy-products.htm</ref><ref>355 Copper Alloys Now Approved by EPA as Antimicrobial, Jun 28, 2011, http://www.appliancemagazine.com/news.php?article=1498614&zone=0&first=1</ref> Normal tarnishing was found to not impair antimicrobial effectiveness.
==[[Nosocomial infection epidemiology and demographics|Epidemiology and Demographics]]==


On February 29, 2008, the EPA granted its first registrations of five different groups of copper alloys as “antimicrobial materials” with public health benefits.<ref>[http://www.epa.gov/pesticides/factsheets/copper-alloy-products.htm EPA registers copper-containing alloy products], May 2008</ref> The registrations granted antimicrobial copper as "a supplement to and not a substitute for standard infection control practices." Subsequent registration approvals of additional copper alloys have been granted. The results of the EPA-supervised antimicrobial studies, demonstrating copper's strong antimicrobial efficacies across a wide range of alloys, have been published.<ref>Collery, Ph., Maymard, I., Theophanides, T., Khassanova, L., and Collery, T., Editors, Metal Ions in Biology and Medicine: Vol. 10., John Libbey Eurotext, Paris © 2008, Antimicrobial regulatory efficacy testing of solid copper alloy surfaces in the USA, by Michels, Harold T. and Anderson, Douglas G. (2008), pp. 185-190.</ref> These copper alloys are the only solid surface materials to be granted “antimicrobial public health claims” status by EPA.
==[[Nosocomial infection risk factors|Risk Factors]]==


{{see also|Antimicrobial_copper-alloy_touch_surfaces#Approved_products}}
==[[Nosocomial infection natural history, complications and prognosis|Natural History, Complications and Prognosis]]==


The EPA registrations state laboratory testing has shown, when cleaned regularly:
==Diagnosis==
*Antimicrobial copper alloy surfaces (ACAs) continuously reduce bacterial contamination, achieving 99.9% reduction within two hours of exposure.
[[Nosocomial infection history and symptoms|History and Symptoms]] | [[Nosocomial infection physical examination |Physical Examination]] | [[Nosocomial infection laboratory findings|Laboratory Findings]] | [[Nosocomial infection chest x ray|Chest X Ray]] | [[Nosocomial infection other imaging findings|Other Imaging Findings]] | [[Nosocomial infection other diagnostic studies|Other Diagnostic Studies]]
*ACAs kill greater than 99.9% of Gram-negative and Gram-positive bacteria within two hours of exposure.
*ACAs deliver continuous and ongoing antibacterial action, remaining effective in killing greater than 99% of bacteria within two hours, and continue even after repeated contamination.
*ACAs help inhibit the buildup and growth of bacteria within two hours of exposure between routine cleaning and sanitizing steps.
*Testing demonstrates effective antibacterial activity against ''S. aureus, E. aerogenes,'' MRSA, ''E. coli'' O157:H7, and ''Pseudomonas aeruginosa''.
The registrations state, “antimicrobial copper alloys may be used in hospitals, other healthcare facilities, and various public, commercial and residential buildings.”


===Aprons===
==Treatment==
Wearing an apron during patient care reduces the risk of infection.{{Citation needed|date=August 2008}} The apron should either be disposable or be used only when caring for a specific patient.
[[Nosocomial infection medical therapy|Medical Therapy]] | [[Nosocomial infection primary prevention|Primary Prevention]] | [[Nosocomial infection cost-effectiveness of therapy|Cost-Effectiveness of Therapy]] | [[Nosocomial infection future or investigational therapies|Future or Investigational Therapies]]


== Mitigation ==
==Case Studies==
{{Expand section|date=December 2009}}
[[Nosocomial infection case study one|Case #1]]
The most effective technique for controlling nosocomial infection is to strategically implement [[Quality Assurance|QA]]/[[Quality control|QC]] measures to the [[health care]] sectors, and evidence-based management can be a feasible approach. For those with ventilator-associated or hospital-acquired pneumonia, controlling and monitoring hospital [[indoor air quality]] needs to be on agenda in management,<ref name=cmhiaq>{{cite journal
|author=Leung M, Chan AH |title=Control and management of hospital indoor air quality |journal=Med. Sci. Monit. |volume=12 |issue=3 |pages=SR17–23 |year=2006 |month=March |pmid=16501436 |url=http://www.medscimonit.com/fulltxt.php?ICID=447117}}</ref> whereas for nosocomial [[rotavirus]] infection, a [[Hand washing|hand hygiene]] protocol has to be enforced.<ref name=coprabc>{{cite journal
|author=Chan PC, Huang LM, Lin HC, ''et al.'' |title=Control of an outbreak of pandrug-resistant ''Acinetobacter baumannii'' colonization and infection in a neonatal intensive care unit |journal=Infect Control Hosp Epidemiol |volume=28 |issue=4 |pages=423–9 |year=2007 |month=April |pmid=17385148 |doi=10.1086/513120 }}</ref><ref name=pste3>{{cite journal
|author=Traub-Dargatz JL, Weese JS, Rousseau JD, Dunowska M, Morley PS, Dargatz DA |title=Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations |journal=Can. Vet. J. |volume=47 |issue=7 |pages=671–6 |year=2006 |month=July |pmid=16898109 |pmc=1482439 }}</ref><ref name=hwhd>{{cite journal
|author=Katz JD |title=Hand washing and hand disinfection: more than your mother taught you |journal=Anesthesiol Clin North America |volume=22 |issue=3 |pages=457–71, vi |year=2004 |month=September |pmid=15325713 |doi=10.1016/j.atc.2004.04.002 }}</ref> Other areas needing management include [[ambulance]] transport.{{Citation needed|date=December 2009}}


==See also==
==Related Chapters==
* [[Cubicle curtain]]
* [[Infection control]]
* [[Infection control]]
* [[Iatrogenesis]]
* [[Iatrogenesis]]
* [[PatientPak]]
* [[Phototherapy]]
* [[Phototherapy]]
* [[Sanitation Standard Operating Procedures]]
* [[Sanitation Standard Operating Procedures|Sanitation standard operating procedures]]
 
==References==
{{Reflist|32em}}


{{Intensive care medicine}}
{{Intensive care medicine}}
{{External causes of morbidity and mortality}}
[[Category:Disease]]


[[Category:Occupational diseases]]
[[Category:Occupational diseases]]
[[Category:Healthcare quality]]
[[Category:Healthcare quality]]
[[Category:Infectious diseases]]
[[Category:Medical hygiene]]
[[Category:Medical hygiene]]



Latest revision as of 18:13, 18 September 2017

For patient information click here

Nosocomial infection
Classification and external resources
Contaminated surfaces increase cross-transmission

Nosocomial infection Microchapters

Home

Patient Information

Overview

Classification

Pathophysiology

Causes

Differentiating Nosocomial Infection from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Nosocomial infection On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Nosocomial infection

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA onNosocomial infection

CDC on Nosocomial infection

Nosocomial infection in the news

Blogs on Nosocomial infection

Directions to Hospitals Treating Nosocomial infection

Risk calculators and risk factors for Nosocomial infection

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Synonyms and keywords: Hospital-acquired infection; HAI

Overview

Classification

Pathophysiology

Causes

Differentiating Nosocomial Infection from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms | Physical Examination | Laboratory Findings | Chest X Ray | Other Imaging Findings | Other Diagnostic Studies

Treatment

Medical Therapy | Primary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies

Case Studies

Case #1

Related Chapters

ar:عدوى المستشفيات cs:Nemocniční nákaza da:Hospitalsinfektion de:Nosokomiale Infektion et:Hospitaalinfektsioon eu:Infekzio nosokomial id:Infeksi nosokomial it:Infezione ospedaliera he:מחלה נוזוקומיאלית nl:Ziekenhuisinfectie nn:Sjukehusinfeksjon sk:Nemocničná nákaza sl:Bolnišnična okužba sr:Болничке инфекције fi:Sairaalabakteeri sv:Vårdrelaterade infektioner uk:Внутрішньолікарняна інфекція