Lateral medullary syndrome: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 19: Line 19:


==Overview==
==Overview==
The lateral medullary syndrome is one of the most common clinical syndromes of brainstem caused by the decreased blood supply to the lateral medulla. It is also commonly known as Wallenberg's syndrome or posterior inferior cerebellar artery syndrome (PICA). The most common cause is thromboembolic occlusion of vertebral arteries. It was described in 1895.  
The lateral medullary syndrome is one of the most common clinical syndromes of brainstem caused by the decreased blood supply to the lateral medulla. It is also commonly known as Wallenberg's syndrome or posterior inferior cerebellar artery syndrome (PICA). The most common cause is thromboembolic occlusion of vertebral arteries. It was described in 1895. The lateral medullary syndrome is basically a manifestation of the vaso-occlusive disease of intracranial vertebral arteries (ICVA) such as vertebral artery or posterior inferior cerebellar artery. The various pathophysiologic mechanisms involved can include; atherosclerosis, athero-embolic phenomenon (heart, aorta, or vertebral arteries), dissection and increased vascular tortuosity, vascular insufficiency, Virchow’s triad play an important role in understanding the pathogenesis of Wallenberg's syndrome.  


==Historical Perspective==
==Historical Perspective==


* Gaspard Vieusseux, in 1808, was the first person to describe Wallenberg's syndrome<ref name="pmid25817616">{{cite journal |vauthors=Ogawa K, Suzuki Y, Oishi M, Kamei S |title=Clinical study of 46 patients with lateral medullary infarction |journal=J Stroke Cerebrovasc Dis |volume=24 |issue=5 |pages=1065–74 |date=May 2015 |pmid=25817616 |doi=10.1016/j.jstrokecerebrovasdis.2015.01.006 |url=}}</ref>
* Gaspard Vieusseux, in 1808, was the first person to describe Wallenberg's syndrome
*This syndrome was later on further elaborated by Adolf Wallenberg, in 1895.<ref name="pmid29262144">{{cite journal |vauthors=Lui F, Tadi P, Anilkumar AC |title= |journal= |volume= |issue= |pages= |date= |pmid=29262144 |doi= |url=}}</ref>
*This syndrome was later on further elaborated by Adolf Wallenberg, in 1895.
*Thomas William was the first person to document extensive anatomy and physiology of brain stem, the cerebellum, and the ventricles in the 17th century. He performed necropsies and extensive dissections on his patient's brains.
*Thomas William was the first person to document extensive anatomy and physiology of brain stem, the cerebellum, and the ventricles in the 17th century. He performed necropsies and extensive dissections on his patient's brains.
* Joseph Jules Dejerine (1849–1917) and his wife  Dejerine-Klumpke demonstrated extensive visual illustrations of the various brain stem and cerebellar lesions.
* Joseph Jules Dejerine (1849–1917) and his wife  Dejerine-Klumpke demonstrated extensive visual illustrations of the various brain stem and cerebellar lesions.
* Charles Foix (1882–1927) was the first person to write an extensive case series on posterior cerebral arteries occlusion related syndromes and lateral medullary syndrome.
* Charles Foix (1882–1927) was the first person to write an extensive case series on posterior cerebral arteries occlusion related syndromes and lateral medullary syndrome.
*Vertebral Basal Insufficiency (VBI) was first introduced by clinicians at the Mayo Clinic, Bob Siekert and Clark Millikan in 1970s.<ref name="pmid2535662">{{cite journal |vauthors=Amarenco P, Hauw JJ |title=[Anatomy of the cerebellar arteries] |language=French |journal=Rev. Neurol. (Paris) |volume=145 |issue=4 |pages=267–76 |date=1989 |pmid=2535662 |doi= |url=}}</ref>
*Vertebral Basal Insufficiency (VBI) was first introduced by clinicians at the Mayo Clinic, Bob Siekert and Clark Millikan in 1970s.


== Pathophysiology ==
== Pathophysiology ==
The lateral medullary syndrome is basically a manifestation of the vaso-occlusive disease of intracranial vertebral arteries (ICVA) such as vertebral artery or posterior inferior cerebellar artery. The various pathophysiologic mechanisms involved can include;<ref name="pmid30319537">{{cite journal |vauthors=Hong YH, Zhou LX, Yao M, Zhu YC, Cui LY, Ni J, Peng B |title=Lesion Topography and Its Correlation With Etiology in Medullary Infarction: Analysis From a Multi-Center Stroke Study in China |journal=Front Neurol |volume=9 |issue= |pages=813 |date=2018 |pmid=30319537 |pmc=6170644 |doi=10.3389/fneur.2018.00813 |url=}}</ref><ref name="pmid27960164">{{cite journal |vauthors=Kim JS, Caplan LR |title=Clinical Stroke Syndromes |journal=Front Neurol Neurosci |volume=40 |issue= |pages=72–92 |date=2016 |pmid=27960164 |doi=10.1159/000448303 |url=}}</ref><ref name="pmid25692102">{{cite journal |vauthors=Caplan LR |title=Lacunar infarction and small vessel disease: pathology and pathophysiology |journal=J Stroke |volume=17 |issue=1 |pages=2–6 |date=January 2015 |pmid=25692102 |pmc=4325635 |doi=10.5853/jos.2015.17.1.2 |url=}}</ref>
The lateral medullary syndrome is basically a manifestation of the vaso-occlusive disease of intracranial vertebral arteries (ICVA) such as vertebral artery or posterior inferior cerebellar artery. The various pathophysiologic mechanisms involved can include;


* Atherosclerosis,  
* Atherosclerosis,  
Line 54: Line 54:
== Causes ==
== Causes ==


*[[Atherosclerosis]] (VA>PICA>Medullary arteries)<ref name="pmid30459855">{{cite journal |vauthors=Inamasu J, Nakae S, Kato Y, Hirose Y |title=Clinical Characteristics of Cerebellar Infarction Due to Arterial Dissection |journal=Asian J Neurosurg |volume=13 |issue=4 |pages=995–1000 |date=2018 |pmid=30459855 |pmc=6208259 |doi=10.4103/ajns.AJNS_373_16 |url=}}</ref>
*[[Atherosclerosis]] (VA>PICA>Medullary arteries)
*[[Embolism]]
*[[Embolism]]
*[[Dissection]] (especially in younger patients)<ref name="pmid24809669">{{cite journal |vauthors=Park MG, Choi JH, Yang TI, Oh SJ, Baik SK, Park KP |title=Spontaneous isolated posterior inferior cerebellar artery dissection: rare but underdiagnosed cause of ischemic stroke |journal=J Stroke Cerebrovasc Dis |volume=23 |issue=7 |pages=1865–70 |date=August 2014 |pmid=24809669 |doi=10.1016/j.jstrokecerebrovasdis.2014.02.023 |url=}}</ref>
*[[Dissection]] (especially in younger patients)
*[[Dolichoectasias|Dolichoectasia]]
*[[Dolichoectasias|Dolichoectasia]]
*[[Vasospasm]]
*[[Vasospasm]]
Line 92: Line 92:
*[[Ageusia]] or [[loss of taste]] on one side of the [[tongue]]
*[[Ageusia]] or [[loss of taste]] on one side of the [[tongue]]
*[[Ataxia]] or [[incoordination]]
*[[Ataxia]] or [[incoordination]]
*[[Diplopia]] or [[double vision]]<ref name="pmid31869134">{{cite journal |vauthors=Saleem F, M Das J |title= |journal= |volume= |issue= |pages= |date= |pmid=31869134 |doi= |url=}}</ref>
*[[Diplopia]] or [[double vision]]
*Oscillopsia
*Oscillopsia
*[[Dizziness]]
*[[Dizziness]]
Line 100: Line 100:
*Ipsilateral sensory  deficits (pain and temperature sensation) affecting the face and cranial nerves
*Ipsilateral sensory  deficits (pain and temperature sensation) affecting the face and cranial nerves
**absence of pain on the ipsilateral side of the face, as well as an absent [[corneal reflex]] (Damage to the spinal [[trigeminal nucleus]])
**absence of pain on the ipsilateral side of the face, as well as an absent [[corneal reflex]] (Damage to the spinal [[trigeminal nucleus]])
*[[Ataxia]]<ref name="pmid19269682">{{cite journal |vauthors=Kim YK, Schulman S |title=Cervical artery dissection: pathology, epidemiology and management |journal=Thromb. Res. |volume=123 |issue=6 |pages=810–21 |date=April 2009 |pmid=19269682 |doi=10.1016/j.thromres.2009.01.013 |url=}}</ref>
*[[Ataxia]]
*[[Horner's syndrome]]<ref name="pmid2389292">{{cite journal |vauthors=Ferbert A, Brückmann H, Drummen R |title=Clinical features of proven basilar artery occlusion |journal=Stroke |volume=21 |issue=8 |pages=1135–42 |date=August 1990 |pmid=2389292 |doi=10.1161/01.str.21.8.1135 |url=}}</ref>
*[[Horner's syndrome]]
*Ipsilateral vocal fold paralysis
*Ipsilateral vocal fold paralysis
*Palatal and pharyngeal paresis
*Palatal and pharyngeal paresis
Line 121: Line 121:
* Hemorrhagic stroke
* Hemorrhagic stroke
* Multiple sclerosis
* Multiple sclerosis
* Acute labyrinthitis<ref name="pmid28471903">{{cite journal |vauthors=Saber Tehrani AS, DeSanto JR, Kattah JC |title=Neuroimaging "HINTS" of the Lateral Medullary Syndrome |journal=J Neuroophthalmol |volume=37 |issue=4 |pages=403–404 |date=December 2017 |pmid=28471903 |doi=10.1097/WNO.0000000000000530 |url=}}</ref><ref name="pmid27619651">{{cite journal |vauthors=Chen K, Schneider AL, Llinas RH, Marsh EB |title=Keep it simple: vascular risk factors and focal exam findings correctly identify posterior circulation ischemia in "dizzy" patients |journal=BMC Emerg Med |volume=16 |issue=1 |pages=37 |date=September 2016 |pmid=27619651 |pmc=5020437 |doi=10.1186/s12873-016-0101-6 |url=}}</ref>
* Acute labyrinthitis
* Acute neuromyelitis optic
* Acute neuromyelitis optic
* Chronic pain syndrome
* Chronic pain syndrome
Line 135: Line 135:
==== Diagnostic Tests: ====
==== Diagnostic Tests: ====


* MRI is the best diagnostic test to establish the diagnosis of Wallenberg's syndrome resulting from an infarct.<ref name="pmid28095387">{{cite journal |vauthors=De Cocker LJ, Lövblad KO, Hendrikse J |title=MRI of Cerebellar Infarction |journal=Eur. Neurol. |volume=77 |issue=3-4 |pages=137–146 |date=2017 |pmid=28095387 |doi=10.1159/000455229 |url=}}</ref><ref name="pmid26419965">{{cite journal |vauthors=Makin SD, Doubal FN, Dennis MS, Wardlaw JM |title=Clinically Confirmed Stroke With Negative Diffusion-Weighted Imaging Magnetic Resonance Imaging: Longitudinal Study of Clinical Outcomes, Stroke Recurrence, and Systematic Review |journal=Stroke |volume=46 |issue=11 |pages=3142–8 |date=November 2015 |pmid=26419965 |pmc=4617292 |doi=10.1161/STROKEAHA.115.010665 |url=}}</ref>
* MRI is the best diagnostic test to establish the diagnosis of Wallenberg's syndrome resulting from an infarct.
* CTA and MRA can also be done to determine the vascular occlusion sites and to rule out dissection.<ref name="pmid16205055">{{cite journal |vauthors=Kumral E, Kisabay A, Ataç C, Calli C, Yunten N |title=Spectrum of the posterior inferior cerebellar artery territory infarcts. Clinical-diffusion-weighted imaging correlates |journal=Cerebrovasc. Dis. |volume=20 |issue=5 |pages=370–80 |date=2005 |pmid=16205055 |doi=10.1159/000088667 |url=}}</ref>
* CTA and MRA can also be done to determine the vascular occlusion sites and to rule out dissection.
* An EKG should be done to rule out any underlying thromboembolic phenomenon such as afib.
* An EKG should be done to rule out any underlying thromboembolic phenomenon such as afib.


Line 158: Line 158:
==Treatment==
==Treatment==


* An interprofessional approach, aiming at a rapid response and coordinated team effort, involving neurologist, neurology specialty nurse, and the pharmacist has shown improved outcomes.<ref name="pmid29515427">{{cite journal |vauthors=Malik MT, Kenton Iii EJ, Vanino D, Dalal SS, Zand R |title=Lateral Medullary Ischemic Infarct Caused by Posterior Inferior Cerebellar Artery Aneurysm |journal=Case Rep Neurol |volume=9 |issue=3 |pages=316–319 |date=2017 |pmid=29515427 |pmc=5836213 |doi=10.1159/000485121 |url=}}</ref><ref name="pmid26732690">{{cite journal |vauthors=Nesbitt J, Moxham S, Ramadurai G, Williams L |title=Improving pain assessment and managment in stroke patients |journal=BMJ Qual Improv Rep |volume=4 |issue=1 |pages= |date=2015 |pmid=26732690 |pmc=4645684 |doi=10.1136/bmjquality.u203375.w3105 |url=}}</ref><ref name="pmid25355838">{{cite journal |vauthors=Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, Creager MA, Eckel RH, Elkind MS, Fornage M, Goldstein LB, Greenberg SM, Horvath SE, Iadecola C, Jauch EC, Moore WS, Wilson JA |title=Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association |journal=Stroke |volume=45 |issue=12 |pages=3754–832 |date=December 2014 |pmid=25355838 |pmc=5020564 |doi=10.1161/STR.0000000000000046 |url=}}</ref>
* An interprofessional approach, aiming at a rapid response and coordinated team effort, involving neurologist, neurology specialty nurse, and the pharmacist has shown improved outcomes.
*Treatment of Wallenberg's syndrome, like other stroke management, is aimed to achieve 3 goals
*Treatment of Wallenberg's syndrome, like other stroke management, is aimed to achieve 3 goals
**Reducing the size of infarction  
**Reducing the size of infarction  
Line 165: Line 165:
* Management includes:
* Management includes:
** IV Thrombolytics
** IV Thrombolytics
*** Tissue plasminogen activator (TPA) within 3-4.5 hours<ref name="pmid28258876">{{cite journal |vauthors=Salerno A, Cotter BV, Winters ME |title=The Use of Tissue Plasminogen Activator in the Treatment of Wallenberg Syndrome Caused by Vertebral Artery Dissection |journal=J Emerg Med |volume=52 |issue=5 |pages=738–740 |date=May 2017 |pmid=28258876 |doi=10.1016/j.jemermed.2017.01.025 |url=}}</ref>
*** Tissue plasminogen activator (TPA) within 3-4.5 hours
** Endovascular revascularization
** Endovascular revascularization
*** For larger intracranial vessels
*** For larger intracranial vessels

Revision as of 18:04, 3 August 2020

Lateral medullary syndrome
The three major arteries of the cerebellum: the SCA, AICA, and PICA. (Posterior inferior cerebellar artery is PICA.)
ICD-10 G46.3
DiseasesDB 10449
MeSH D014854

WikiDoc Resources for Lateral medullary syndrome

Articles

Most recent articles on Lateral medullary syndrome

Most cited articles on Lateral medullary syndrome

Review articles on Lateral medullary syndrome

Articles on Lateral medullary syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Lateral medullary syndrome

Images of Lateral medullary syndrome

Photos of Lateral medullary syndrome

Podcasts & MP3s on Lateral medullary syndrome

Videos on Lateral medullary syndrome

Evidence Based Medicine

Cochrane Collaboration on Lateral medullary syndrome

Bandolier on Lateral medullary syndrome

TRIP on Lateral medullary syndrome

Clinical Trials

Ongoing Trials on Lateral medullary syndrome at Clinical Trials.gov

Trial results on Lateral medullary syndrome

Clinical Trials on Lateral medullary syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Lateral medullary syndrome

NICE Guidance on Lateral medullary syndrome

NHS PRODIGY Guidance

FDA on Lateral medullary syndrome

CDC on Lateral medullary syndrome

Books

Books on Lateral medullary syndrome

News

Lateral medullary syndrome in the news

Be alerted to news on Lateral medullary syndrome

News trends on Lateral medullary syndrome

Commentary

Blogs on Lateral medullary syndrome

Definitions

Definitions of Lateral medullary syndrome

Patient Resources / Community

Patient resources on Lateral medullary syndrome

Discussion groups on Lateral medullary syndrome

Patient Handouts on Lateral medullary syndrome

Directions to Hospitals Treating Lateral medullary syndrome

Risk calculators and risk factors for Lateral medullary syndrome

Healthcare Provider Resources

Symptoms of Lateral medullary syndrome

Causes & Risk Factors for Lateral medullary syndrome

Diagnostic studies for Lateral medullary syndrome

Treatment of Lateral medullary syndrome

Continuing Medical Education (CME)

CME Programs on Lateral medullary syndrome

International

Lateral medullary syndrome en Espanol

Lateral medullary syndrome en Francais

Business

Lateral medullary syndrome in the Marketplace

Patents on Lateral medullary syndrome

Experimental / Informatics

List of terms related to Lateral medullary syndrome

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Synonyms and keywords: Wallenberg's syndrome; posterior inferior cerebellar artery syndrome (PICA)

Overview

The lateral medullary syndrome is one of the most common clinical syndromes of brainstem caused by the decreased blood supply to the lateral medulla. It is also commonly known as Wallenberg's syndrome or posterior inferior cerebellar artery syndrome (PICA). The most common cause is thromboembolic occlusion of vertebral arteries. It was described in 1895. The lateral medullary syndrome is basically a manifestation of the vaso-occlusive disease of intracranial vertebral arteries (ICVA) such as vertebral artery or posterior inferior cerebellar artery. The various pathophysiologic mechanisms involved can include; atherosclerosis, athero-embolic phenomenon (heart, aorta, or vertebral arteries), dissection and increased vascular tortuosity, vascular insufficiency, Virchow’s triad play an important role in understanding the pathogenesis of Wallenberg's syndrome.

Historical Perspective

  • Gaspard Vieusseux, in 1808, was the first person to describe Wallenberg's syndrome
  • This syndrome was later on further elaborated by Adolf Wallenberg, in 1895.
  • Thomas William was the first person to document extensive anatomy and physiology of brain stem, the cerebellum, and the ventricles in the 17th century. He performed necropsies and extensive dissections on his patient's brains.
  • Joseph Jules Dejerine (1849–1917) and his wife Dejerine-Klumpke demonstrated extensive visual illustrations of the various brain stem and cerebellar lesions.
  • Charles Foix (1882–1927) was the first person to write an extensive case series on posterior cerebral arteries occlusion related syndromes and lateral medullary syndrome.
  • Vertebral Basal Insufficiency (VBI) was first introduced by clinicians at the Mayo Clinic, Bob Siekert and Clark Millikan in 1970s.

Pathophysiology

The lateral medullary syndrome is basically a manifestation of the vaso-occlusive disease of intracranial vertebral arteries (ICVA) such as vertebral artery or posterior inferior cerebellar artery. The various pathophysiologic mechanisms involved can include;

  • Atherosclerosis,
  • Athero-embolic phenomenon (heart, aorta, or vertebral arteries)
  • Dissection and increased vascular tortuosity
  • Vascular insufficiency
  • Virchow’s triad play an important role in understanding the pathogenesis of Wallenberg's syndrome
    • An abnormality of the intima and vascular wall
    • An abnormality of blood flow, and
    • An abnormality of blood coagulability

Involvement of various structures in lateral medulla along with respective manifestation or clinical signs include;

  • Nucleus ambiguous: dysphagia, dysphonia, and dysarthria, laryngeal, pharyngeal and palatal paralysis
  • Trigeminal nucleus: ipsilateral facial and corneal anesthesia
  • Spinothalamic tract: loss of pain and temperature sensation to the opposite side of the body
  • Cerebellum: ataxia
  • Hypothalamic fibers: sympathetic nervous system abnormal c/w Horners syndrome
  • Deiters' nucleus and other vestibular nuclei: nystagmus and vertigo
  • Central tegmental tract: palatal myoclonus

Causes

Risk Factors

Natural History, Complications and Prognosis

  • The natural history, complications, and prognosis of Lateral medullary syndrome depends upon the size and location of the infarct/hemorrhagic area of the medulla.
  • Some people may experience a gradual improvement in their symptoms with complete resolution of the symptoms within the week to months while others may worsen or show no improvement despite the treatment.
  • Overall, the prognosis is good and most of the patients are able to return back to a normal baseline. Ataxia is seen as the most common sequelae.
  • The most common complications seen are;
    • Aspiration pneumonia
    • Deep vein thrombosis
    • Pulmonary embolism
    • Myocardial infarction

Diagnosis

History and Physical Examination

  • Rostral lesions present as marked dysphagia and dysphonia (nucleus ambiguous)
  • Caudal lesion present as vertigo, ataxia, nausea/vomiting, and Horner syndrome

Ipsilateral (same side of lesion):

Contralateral (opposite side of lesion):

  • Contralateral sensory deficits (pain and temperature sensation) affecting the trunk and extremities
  • No or minimal hemiparesis

Evaluation:

Differential Diagnosis:

  • Hemorrhagic stroke
  • Multiple sclerosis
  • Acute labyrinthitis
  • Acute neuromyelitis optic
  • Chronic pain syndrome
  • Lacunar stroke
  • Middle cerebral artery stroke
  • Migraine headache
  • Posterior reversible encephalopathy syndrome
  • Subarachnoid hemorrhage
  • Subdural hematoma
  • Systemic lupus erythematosus
  • Vertebrobasilar stroke

Diagnostic Tests:

  • MRI is the best diagnostic test to establish the diagnosis of Wallenberg's syndrome resulting from an infarct.
  • CTA and MRA can also be done to determine the vascular occlusion sites and to rule out dissection.
  • An EKG should be done to rule out any underlying thromboembolic phenomenon such as afib.

Localization of the Lesion

Dysfunction Effects
lateral spinothalamic tract contralateral deficits in pain and temperature sensation from body
spinal trigeminal nucleus ipsilateral loss of pain and temperature sensation from face
nucleus ambiguus (which affects vagus X and glossopharyngeal nerves IX) dysphagia, hoarseness, diminished gag reflex
vestibular system vertigo, diplopia, nystagmus, vomiting
descending sympathetic fibers ipsilateral Horner's syndrome
central tegmental tract palatal myoclonus

Treatment

  • An interprofessional approach, aiming at a rapid response and coordinated team effort, involving neurologist, neurology specialty nurse, and the pharmacist has shown improved outcomes.
  • Treatment of Wallenberg's syndrome, like other stroke management, is aimed to achieve 3 goals
    • Reducing the size of infarction
    • Preventing any medical complication
    • Improving patient outcome and prognosis
  • Management includes:
    • IV Thrombolytics
      • Tissue plasminogen activator (TPA) within 3-4.5 hours
    • Endovascular revascularization
      • For larger intracranial vessels
    • Carotid endarterectomy
      • For larger extracranial vessels
    • Antithrombotics has a controversial role in the setting of an acute stroke but have shown improved outcomes when combined with aspirin
      • Oral anticoagulants and antiplatelet agents should be considered upon discharge for secondary prevention of stroke
    • High dose statins
    • Close ICU monitoring for first 24 hrs after giving TPA
      • Blood pressure monitoring, allow permissive hypertension and lower the BP only if,
        • BP > 220/120 mmHg
        • Patient receives IV TPA
      • Normal saline is preferred for IV fluids and hypotonic fluids should be avoided to prevent cerebral edema
    • Speech therapy to assess the risk of aspiration. A feeding tube or PEG tube may be considered for patients with severe dysphagia.
    • Low dose heparin or low molecular weight heparin (LWMH) for DVT prophylaxis
    • Physical therapy and Occupational therapy

References


External links

Template:Diseases of the nervous system Template:Lesions of the spinal cord and brainstem

de:Wallenberg-Syndrom Template:WH Template:WS