KIF3B: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Kinesin-like protein KIF3B''' is a [[protein]] that in humans is encoded by the ''KIF3B'' [[gene]].<ref name="pmid9205841">{{cite journal | vauthors = Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O | title = Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro | journal = DNA Research | volume = 4 | issue = 2 | pages = 141–50 | date = Apr 1997 | pmid = 9205841 | pmc =  | doi = 10.1093/dnares/4.2.141 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: KIF3B kinesin family member 3B| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9371| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
The protein encoded by this gene forms a heterotrimeric motor complex with [[KIF3A|kinesin family member 3A]] and KAP3 (kinesin accessory protein 3) to drive intra-[[flagellum|flagellar]] transport and possibly to aid in chromosome movement during [[mitosis]] and [[meiosis]]. The encoded protein is a plus end-directed [[microtubule]] motor and can interact with the [[SMC3 (gene)|SMC3]] subunit of the [[cohesin|cohesin complex]]. In addition, the encoded protein may be involved in the intracellular movement of membranous [[organelle]]s. The heterotrimeric KIF3B/KIF3A/KAP3 motor protein is a member of the kinesin-2 subfamily of the kinesin superfamily.<ref name="entrez"/><ref name="pmid8601599">{{cite journal | vauthors = Scholey JM | title = Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles | journal = The Journal of Cell Biology | volume = 133 | issue = 1 | pages = 1–4 | date = Apr 1996 | pmid = 8601599 | pmc = 2120781 | doi = 10.1083/jcb.133.1.1 }}</ref><ref>{{cite journal | vauthors = Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L | title = A standardized kinesin nomenclature | journal = The Journal of Cell Biology | volume = 167 | issue = 1 | pages = 19–22 | date = Oct 2004 | pmid = 15479732 | pmc = 2041940 | doi = 10.1083/jcb.200408113 }}</ref>
| image =
| image_source =
| PDB =  
| Name = Kinesin family member 3B
| HGNCid = 6320
| Symbol = KIF3B
| AltSymbols =; HH0048; KIAA0359
| OMIM = 603754
| ECnumber = 
| Homologene = 55849
| MGIid = 107688
| GeneAtlas_image1 = PBB_GE_KIF3B_203943_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0008574 |text = plus-end-directed microtubule motor activity}}
| Component = {{GNF_GO|id=GO:0005873 |text = plus-end kinesin complex}} {{GNF_GO|id=GO:0005874 |text = microtubule}} {{GNF_GO|id=GO:0005875 |text = microtubule associated complex}}
| Process = {{GNF_GO|id=GO:0007018 |text = microtubule-based movement}} {{GNF_GO|id=GO:0007368 |text = determination of left/right symmetry}} {{GNF_GO|id=GO:0008089 |text = anterograde axon cargo transport}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 9371
    | Hs_Ensembl = ENSG00000101350
    | Hs_RefseqProtein = NP_004789
    | Hs_RefseqmRNA = NM_004798
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 20
    | Hs_GenLoc_start = 30329128
    | Hs_GenLoc_end = 30386475
    | Hs_Uniprot = O15066
    | Mm_EntrezGene = 16569
    | Mm_Ensembl = ENSMUSG00000027475
    | Mm_RefseqmRNA = NM_008444
    | Mm_RefseqProtein = NP_032470
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 2
    | Mm_GenLoc_start = 152982870
    | Mm_GenLoc_end = 153024822
    | Mm_Uniprot = Q3UFZ8
  }}
}}
'''Kinesin family member 3B''', also known as '''KIF3B''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: KIF3B kinesin family member 3B| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9371| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Interactions ==
{{PBB_Summary
| section_title =  
| summary_text = The protein encoded by this gene acts as a heterodimer with kinesin family member 3A to aid in chromosome movement during mitosis and meiosis. The encoded protein is a plus end-directed microtubule motor and can interact with the SMC3 subunit of the cohesin complex. In addition, the encoded protein may be involved in the intracellular movement of membranous organelles. This protein and kinesin family member 3A form the kinesin II subfamily of the kinesin superfamily.<ref name="entrez">{{cite web | title = Entrez Gene: KIF3B kinesin family member 3B| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9371| accessdate = }}</ref>
}}


==References==
KIF3B has been shown to [[Protein-protein interaction|interact]] with [[RAB4A]].<ref name="pmid12832475">{{cite journal | vauthors = Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM | title = Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin | journal = Molecular and Cellular Biology | volume = 23 | issue = 14 | pages = 4892–900 | date = Jul 2003 | pmid = 12832475 | pmc = 162221 | doi = 10.1128/MCB.23.14.4892-4900.2003 }}</ref>
{{reflist|2}}
 
==Further reading==
==Model organisms==
[[Model organism]]s have been used in the study of KIF3B function. A conditional [[knockout mouse]] line called ''Kif3b<sup>tm1b(EUCOMM)Wtsi</sup>'' was generated at the [[Wellcome Trust Sanger Institute]].<ref name="mgp_reference">{{cite journal |title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |author=Gerdin AK |year=2010 |journal=Acta Ophthalmologica|volume=88 |pages=925–7|doi=10.1111/j.1755-3768.2010.4142.x }}</ref> Male and female animals underwent a standardized [[phenotypic screen]]<ref name="IMPCsearch_ref">{{cite web |url=http://www.mousephenotype.org/data/search?q=Kif3b#fq=*:*&facet=gene |title=International Mouse Phenotyping Consortium}}</ref> to determine the effects of deletion.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref><ref name="pmid23870131">{{cite journal | vauthors = White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP | title = Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes | journal = Cell | volume = 154 | issue = 2 | pages = 452–64 | date = Jul 2013 | pmid = 23870131 | doi = 10.1016/j.cell.2013.06.022 | pmc=3717207}}</ref> Additional screens performed:  - In-depth immunological phenotyping<ref name="iii_ref">{{cite web |url= http://www.immunophenotyping.org/data/search?keys=Kif3b&field_gene_construct_tid=All |title=Infection and Immunity Immunophenotyping (3i) Consortium}}</ref>
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: left;" |
|+ ''Kif3b'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
|-
| colspan=2; style="text-align: center;" | All data available at.<ref name="IMPCsearch_ref"/><ref name="iii_ref" />
 
|-
| Peripheral blood leukocytes 6 Weeks || bgcolor="#C40000"|Abnormal
 
|-
| Insulin || bgcolor="#488ED3"|Normal
 
|-
| ''[[Haematology]]'' 6 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Homozygous viability at P14 || bgcolor="#C40000"|Abnormal
 
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
 
|-
| Body weight || bgcolor="#488ED3"|Normal
 
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
 
|-
| Grip strength || bgcolor="#488ED3"|Normal
 
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
 
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
 
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
 
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
 
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
 
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
 
|-
| Eye morphology || bgcolor="#488ED3"|Normal
 
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
 
|-
| ''[[Haematology]]'' 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Peripheral blood leukocytes 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Heart weight || bgcolor="#488ED3"|Normal
 
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal
 
|-
| Cytotoxic T Cell Function || bgcolor="#488ED3"|Normal
 
|-
| Spleen Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Mesenteric Lymph Node Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Bone Marrow Immunophenotyping || bgcolor="#488ED3"|Normal
 
|-
| Epidermal Immune Composition || bgcolor="#488ED3"|Normal
 
|-
|}
{{clear|left}}
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Yamazaki H, Nakata T, Okada Y, Hirokawa N | title = KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport | journal = The Journal of Cell Biology | volume = 130 | issue = 6 | pages = 1387–99 | date = Sep 1995 | pmid = 7559760 | pmc = 2120571 | doi = 10.1083/jcb.130.6.1387 }}
| citations =
* {{cite journal | vauthors = Nagata KI, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A | title = The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3 | journal = The EMBO Journal | volume = 17 | issue = 1 | pages = 149–58 | date = Jan 1998 | pmid = 9427749 | pmc = 1170366 | doi = 10.1093/emboj/17.1.149 }}
*{{cite journal | author=Yamazaki H, Nakata T, Okada Y, Hirokawa N |title=KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. |journal=J. Cell Biol. |volume=130 |issue= 6 |pages= 1387-99 |year= 1995 |pmid= 7559760 |doi= }}
* {{cite journal | vauthors = Shimizu K, Shirataki H, Honda T, Minami S, Takai Y | title = Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide | journal = The Journal of Biological Chemistry | volume = 273 | issue = 12 | pages = 6591–4 | date = Mar 1998 | pmid = 9506951 | doi = 10.1074/jbc.273.12.6591 }}
*{{cite journal  | author=Nagase T, Ishikawa K, Nakajima D, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. |journal=DNA Res. |volume=4 |issue= 2 |pages= 141-50 |year= 1997 |pmid= 9205841 |doi=  }}
* {{cite journal | vauthors = Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N | title = Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein | journal = Cell | volume = 95 | issue = 6 | pages = 829–37 | date = Dec 1998 | pmid = 9865700 | doi = 10.1016/S0092-8674(00)81705-5 }}
*{{cite journal | author=Nagata K, Puls A, Futter C, ''et al.'' |title=The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. |journal=EMBO J. |volume=17 |issue= 1 |pages= 149-58 |year= 1998 |pmid= 9427749 |doi= 10.1093/emboj/17.1.149 }}
* {{cite journal | vauthors = Navarro E, Espinosa L, Adell T, Torà M, Berrozpe G, Real FX | title = Expressed sequence tag (EST) phenotyping of HT-29 cells: cloning of ser/thr protein kinase EMK1, kinesin KIF3B, and of transcripts that include Alu repeated elements | journal = Biochimica et Biophysica Acta | volume = 1450 | issue = 3 | pages = 254–64 | date = Jul 1999 | pmid = 10395937 | doi = 10.1016/S0167-4889(99)00051-8 }}
*{{cite journal | author=Shimizu K, Shirataki H, Honda T, ''et al.'' |title=Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. |journal=J. Biol. Chem. |volume=273 |issue= 12 |pages= 6591-4 |year= 1998 |pmid= 9506951 |doi= }}
* {{cite journal | vauthors = Whitehead JL, Wang SY, Bost-Usinger L, Hoang E, Frazer KA, Burnside B | title = Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina | journal = Experimental Eye Research | volume = 69 | issue = 5 | pages = 491–503 | date = Nov 1999 | pmid = 10548469 | doi = 10.1006/exer.1999.0724 }}
*{{cite journal | author=Nonaka S, Tanaka Y, Okada Y, ''et al.'' |title=Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. |journal=Cell |volume=95 |issue= 6 |pages= 829-37 |year= 1999 |pmid= 9865700 |doi= }}
* {{cite journal | vauthors = Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T | title = Identification of a link between the tumour suppressor APC and the kinesin superfamily | journal = Nature Cell Biology | volume = 4 | issue = 4 | pages = 323–7 | date = Apr 2002 | pmid = 11912492 | doi = 10.1038/ncb779 }}
*{{cite journal | author=Navarro E, Espinosa L, Adell T, ''et al.'' |title=Expressed sequence tag (EST) phenotyping of HT-29 cells: cloning of ser/thr protein kinase EMK1, kinesin KIF3B, and of transcripts that include Alu repeated elements. |journal=Biochim. Biophys. Acta |volume=1450 |issue= 3 |pages= 254-64 |year= 1999 |pmid= 10395937 |doi= }}
* {{cite journal | vauthors = Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC | title = IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia | journal = The Journal of Biological Chemistry | volume = 278 | issue = 36 | pages = 34211–8 | date = Sep 2003 | pmid = 12821668 | doi = 10.1074/jbc.M300156200 }}
*{{cite journal | author=Whitehead JL, Wang SY, Bost-Usinger L, ''et al.'' |title=Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina. |journal=Exp. Eye Res. |volume=69 |issue= 5 |pages= 491-503 |year= 1999 |pmid= 10548469 |doi= 10.1006/exer.1999.0724 }}
* {{cite journal | vauthors = Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM | title = Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin | journal = Molecular and Cellular Biology | volume = 23 | issue = 14 | pages = 4892–900 | date = Jul 2003 | pmid = 12832475 | pmc = 162221 | doi = 10.1128/MCB.23.14.4892-4900.2003 }}
*{{cite journal | author=Deloukas P, Matthews LH, Ashurst J, ''et al.'' |title=The DNA sequence and comparative analysis of human chromosome 20. |journal=Nature |volume=414 |issue= 6866 |pages= 865-71 |year= 2002 |pmid= 11780052 |doi= 10.1038/414865a }}
* {{cite journal | vauthors = Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM | title = Functional proteomics mapping of a human signaling pathway | journal = Genome Research | volume = 14 | issue = 7 | pages = 1324–32 | date = Jul 2004 | pmid = 15231748 | pmc = 442148 | doi = 10.1101/gr.2334104 }}
*{{cite journal  | author=Jimbo T, Kawasaki Y, Koyama R, ''et al.'' |title=Identification of a link between the tumour suppressor APC and the kinesin superfamily. |journal=Nat. Cell Biol. |volume=4 |issue= 4 |pages= 323-7 |year= 2002 |pmid= 11912492 |doi= 10.1038/ncb779 }}
* {{cite journal | vauthors = Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T | title = Role of the kinesin-2 family protein, KIF3, during mitosis | journal = The Journal of Biological Chemistry | volume = 281 | issue = 7 | pages = 4094–9 | date = Feb 2006 | pmid = 16298999 | doi = 10.1074/jbc.M507028200 }}
*{{cite journal | author=Baker SA, Freeman K, Luby-Phelps K, ''et al.'' |title=IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. |journal=J. Biol. Chem. |volume=278 |issue= 36 |pages= 34211-8 |year= 2003 |pmid= 12821668 |doi= 10.1074/jbc.M300156200 }}
* {{cite journal | vauthors = Wu Y, Dai XQ, Li Q, Chen CX, Mai W, Hussain Z, Long W, Montalbetti N, Li G, Glynne R, Wang S, Cantiello HF, Wu G, Chen XZ | title = Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin | journal = Human Molecular Genetics | volume = 15 | issue = 22 | pages = 3280–92 | date = Nov 2006 | pmid = 17008358 | doi = 10.1093/hmg/ddl404 }}
*{{cite journal | author=Imamura T, Huang J, Usui I, ''et al.'' |title=Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. |journal=Mol. Cell. Biol. |volume=23 |issue= 14 |pages= 4892-900 |year= 2003 |pmid= 12832475 |doi= }}
*{{cite journal | author=Colland F, Jacq X, Trouplin V, ''et al.'' |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324-32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 }}
*{{cite journal | author=Zhang Y, Hancock WO |title=The two motor domains of KIF3A/B coordinate for processive motility and move at different speeds. |journal=Biophys. J. |volume=87 |issue= 3 |pages= 1795-804 |year= 2005 |pmid= 15345558 |doi= 10.1529/biophysj.104.039842 }}
*{{cite journal  | author=Haraguchi K, Hayashi T, Jimbo T, ''et al.'' |title=Role of the kinesin-2 family protein, KIF3, during mitosis. |journal=J. Biol. Chem. |volume=281 |issue= 7 |pages= 4094-9 |year= 2006 |pmid= 16298999 |doi= 10.1074/jbc.M507028200 }}
*{{cite journal | author=Wu Y, Dai XQ, Li Q, ''et al.'' |title=Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. |journal=Hum. Mol. Genet. |volume=15 |issue= 22 |pages= 3280-92 |year= 2006 |pmid= 17008358 |doi= 10.1093/hmg/ddl404 }}
}}
{{refend}}
{{refend}}
{{protein-stub}}
{{WikiDoc Sources}}

Latest revision as of 06:27, 2 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Kinesin-like protein KIF3B is a protein that in humans is encoded by the KIF3B gene.[1][2]

Function

The protein encoded by this gene forms a heterotrimeric motor complex with kinesin family member 3A and KAP3 (kinesin accessory protein 3) to drive intra-flagellar transport and possibly to aid in chromosome movement during mitosis and meiosis. The encoded protein is a plus end-directed microtubule motor and can interact with the SMC3 subunit of the cohesin complex. In addition, the encoded protein may be involved in the intracellular movement of membranous organelles. The heterotrimeric KIF3B/KIF3A/KAP3 motor protein is a member of the kinesin-2 subfamily of the kinesin superfamily.[2][3][4]

Interactions

KIF3B has been shown to interact with RAB4A.[5]

Model organisms

Model organisms have been used in the study of KIF3B function. A conditional knockout mouse line called Kif3btm1b(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[6] Male and female animals underwent a standardized phenotypic screen[7] to determine the effects of deletion.[8][9][10][11] Additional screens performed: - In-depth immunological phenotyping[12]

References

  1. Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Apr 1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 4 (2): 141–50. doi:10.1093/dnares/4.2.141. PMID 9205841.
  2. 2.0 2.1 "Entrez Gene: KIF3B kinesin family member 3B".
  3. Scholey JM (Apr 1996). "Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles". The Journal of Cell Biology. 133 (1): 1–4. doi:10.1083/jcb.133.1.1. PMC 2120781. PMID 8601599.
  4. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (Oct 2004). "A standardized kinesin nomenclature". The Journal of Cell Biology. 167 (1): 19–22. doi:10.1083/jcb.200408113. PMC 2041940. PMID 15479732.
  5. Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM (Jul 2003). "Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin". Molecular and Cellular Biology. 23 (14): 4892–900. doi:10.1128/MCB.23.14.4892-4900.2003. PMC 162221. PMID 12832475.
  6. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  7. 7.0 7.1 "International Mouse Phenotyping Consortium".
  8. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  9. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  10. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  11. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  12. 12.0 12.1 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading