Immunodeficiency affecting cellular and humoral Immunity: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 61: Line 61:


==γc (IL-2Rγ) deficiency==
==γc (IL-2Rγ) deficiency==
*X-linked transmission, presenting usually between ages of 3-6 months.
*[[X-linked]] transmission.
*It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG).  
*It is caused by [[mutation]] in the gene encoding the gamma sub-unit of interleukin-2 receptor ([[IL2RG]]).  
*Patients present with repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.<ref>{{Cite journal
*Patients present with repeated bacterial, viral and fungal [[infections]], lack of delayed hypersensitivity and failure to thrive.<ref>{{Cite journal
  | author = [[W. H. HITZIG]] & [[H. WILLI]]
  | author = [[W. H. HITZIG]] & [[H. WILLI]]
  | title = &#91;Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")&#93;
  | title = &#91;Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")&#93;
Line 73: Line 73:
  | pmid = 13907792
  | pmid = 13907792
}}</ref>
}}</ref>
*HSCT is the mainstay of treatment.<ref>{{Cite journal
*[[HSCT]] is the mainstay of treatment.<ref>{{Cite journal
  | author = [[Fred S. Rosen]]
  | author = [[Fred S. Rosen]]
  | title = Successful gene therapy for severe combined immunodeficiency
  | title = Successful gene therapy for severe combined immunodeficiency
Line 87: Line 87:


==JAK-3 deficiency==
==JAK-3 deficiency==
*Autosomal recessive(AR) transmission
*[[Autosomal recessive]] (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the Janus kinase-3 gene on chromosome 19.
*It is caused by homozygous or compound heterozygous mutation in the [[Janus kinase-3]] gene on [[chromosome 19]].
*It has a similar presentation to X-linked SCID as above.<ref>{{Cite journal
*It has a similar presentation to X-linked SCID as above.<ref>{{Cite journal
  | author = [[F. Candotti]], [[S. A. Oakes]], [[J. A. Johnston]], [[S. Giliani]], [[R. F. Schumacher]], [[P. Mella]], [[M. Fiorini]], [[A. G. Ugazio]], [[R. Badolato]], [[L. D. Notarangelo]], [[F. Bozzi]], [[P. Macchi]], [[D. Strina]], [[P. Vezzoni]], [[R. M. Blaese]], [[J. J. O'Shea]] & [[A. Villa]]
  | author = [[F. Candotti]], [[S. A. Oakes]], [[J. A. Johnston]], [[S. Giliani]], [[R. F. Schumacher]], [[P. Mella]], [[M. Fiorini]], [[A. G. Ugazio]], [[R. Badolato]], [[L. D. Notarangelo]], [[F. Bozzi]], [[P. Macchi]], [[D. Strina]], [[P. Vezzoni]], [[R. M. Blaese]], [[J. J. O'Shea]] & [[A. Villa]]
Line 100: Line 100:
  | pmid = 9354668
  | pmid = 9354668
}}</ref>
}}</ref>
*HSCT is the mainstay of treatment.<ref>{{Cite journal
*[[HSCT]] is the mainstay of treatment.<ref>{{Cite journal
  | author = [[Joseph L. Roberts]], [[Andrea Lengi]], [[Stephanie M. Brown]], [[Min Chen]], [[Yong-Jie Zhou]], [[John J. O'Shea]] & [[Rebecca H. Buckley]]
  | author = [[Joseph L. Roberts]], [[Andrea Lengi]], [[Stephanie M. Brown]], [[Min Chen]], [[Yong-Jie Zhou]], [[John J. O'Shea]] & [[Rebecca H. Buckley]]
  | title = Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation
  | title = Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation
Line 114: Line 114:


==IL7a==
==IL7a==
*Autosomal recessive(AR) transmission
*[[Autosomal recessive]] (AR) transmission
*It is caused by homozygous or compound heterozygous mutation in the interleukin-7 receptor gene on chromosome 5.<ref>{{Cite journal
*It is caused by homozygous or compound heterozygous mutation in the [[interleukin-7 receptor]] gene on [[chromosome 5]].<ref>{{Cite journal
  | author = [[A. Puel]], [[S. F. Ziegler]], [[R. H. Buckley]] & [[W. J. Leonard]]
  | author = [[A. Puel]], [[S. F. Ziegler]], [[R. H. Buckley]] & [[W. J. Leonard]]
  | title = Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency
  | title = Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency
Line 140: Line 140:


==CD3D==
==CD3D==
*Autosomal recessive(AR) transmission
*[[Autosomal recessive|Autosomal recessiv]]<nowiki/>e (AR) transmission
*It is caused by mutation in the delta chain of the T3 T-cell antigen (OKT3) on chromosome 11.<ref>{{Cite journal
*It is caused by mutation in the delta chain of the T3 T-cell antigen ([[OKT3]]) on [[chromosome 11]].<ref>{{Cite journal
  | author = [[P. van den Elsen]], [[G. Bruns]], [[D. S. Gerhard]], [[D. Pravtcheva]], [[C. Jones]], [[D. Housman]], [[F. A. Ruddle]], [[S. Orkin]] & [[C. Terhorst]]
  | author = [[P. van den Elsen]], [[G. Bruns]], [[D. S. Gerhard]], [[D. Pravtcheva]], [[C. Jones]], [[D. Housman]], [[F. A. Ruddle]], [[S. Orkin]] & [[C. Terhorst]]
  | title = Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9
  | title = Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9
Line 152: Line 152:
  | pmid = 3857625
  | pmid = 3857625
}}</ref>
}}</ref>
*Patients present with recurrent infections and failure to thrive.
*Patients present with recurrent [[infections]] and failure to thrive.
*HSCT is the mainstay of treatment. <ref>{{Cite journal
*[[HSCT]] is the mainstay of treatment. <ref>{{Cite journal
  | author = [[Grace P. Yu]], [[Kari C. Nadeau]], [[David R. Berk]], [[Genevieve de Saint Basile]], [[Nathalie Lambert]], [[Perrine Knapnougel]], [[Joseph Roberts]], [[Kristina Kavanau]], [[Elizabeth Dunn]], [[E. Richard Stiehm]], [[David B. Lewis]], [[Dale T. Umetsu]], [[Jennifer M. Puck]] & [[Morton J. Cowan]]
  | author = [[Grace P. Yu]], [[Kari C. Nadeau]], [[David R. Berk]], [[Genevieve de Saint Basile]], [[Nathalie Lambert]], [[Perrine Knapnougel]], [[Joseph Roberts]], [[Kristina Kavanau]], [[Elizabeth Dunn]], [[E. Richard Stiehm]], [[David B. Lewis]], [[Dale T. Umetsu]], [[Jennifer M. Puck]] & [[Morton J. Cowan]]
  | title = Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID
  | title = Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID
Line 167: Line 167:


==CD3E==
==CD3E==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by mutation in the epsilon gene of T3 T-cell antigen on chromosome 11.<ref>{{Cite journal
*It is caused by mutation in the epsilon gene of T3 T-cell antigen on [[chromosome 11]].<ref>{{Cite journal
  | author = [[D. P. Gold]], [[J. J. van Dongen]], [[C. C. Morton]], [[G. A. Bruns]], [[P. van den Elsen]], [[A. H. Geurts van Kessel]] & [[C. Terhorst]]
  | author = [[D. P. Gold]], [[J. J. van Dongen]], [[C. C. Morton]], [[G. A. Bruns]], [[P. van den Elsen]], [[A. H. Geurts van Kessel]] & [[C. Terhorst]]
  | title = The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice
  | title = The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice
Line 181: Line 181:
      
      
==CD247==
==CD247==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by homozygous mutation in the CD247 (CD3Z) gene on chromosome 1.<ref>{{Cite journal
*It is caused by homozygous mutation in the [[CD247]] (CD3Z) gene on [[chromosome 1]].<ref>{{Cite journal
  | author = [[A. M. Weissman]], [[D. Hou]], [[D. G. Orloff]], [[W. S. Modi]], [[H. Seuanez]], [[S. J. O'Brien]] & [[R. D. Klausner]]
  | author = [[A. M. Weissman]], [[D. Hou]], [[D. G. Orloff]], [[W. S. Modi]], [[H. Seuanez]], [[S. J. O'Brien]] & [[R. D. Klausner]]
  | title = Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex
  | title = Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex
Line 195: Line 195:
      
      
==CD45 deficiency==
==CD45 deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by mutation in the CD45 gene on chromosome 1.<ref>{{Cite journal
*It is caused by mutation in the [[CD45]] gene on [[chromosome 1]].<ref>{{Cite journal
  | author = [[M. F. Seldin]], [[H. C. Morse]], [[R. C. LeBoeuf]] & [[A. D. Steinberg]]
  | author = [[M. F. Seldin]], [[H. C. Morse]], [[R. C. LeBoeuf]] & [[A. D. Steinberg]]
  | title = Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q
  | title = Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q
Line 209: Line 209:


==Coronin-1A deficiency==
==Coronin-1A deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by mutation in the CORO1A gene(which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on chromosome 16.<ref>{{Cite journal
*It is caused by mutation in the [[CORO1A]] gene (which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on [[chromosome 16]].<ref>{{Cite journal
  | author = [[Lawrence R. Shiow]], [[David W. Roadcap]], [[Kenneth Paris]], [[Susan R. Watson]], [[Irina L. Grigorova]], [[Tonya Lebet]], [[Jinping An]], [[Ying Xu]], [[Craig N. Jenne]], [[Niko Foger]], [[Ricardo U. Sorensen]], [[Christopher C. Goodnow]], [[James E. Bear]], [[Jennifer M. Puck]] & [[Jason G. Cyster]]
  | author = [[Lawrence R. Shiow]], [[David W. Roadcap]], [[Kenneth Paris]], [[Susan R. Watson]], [[Irina L. Grigorova]], [[Tonya Lebet]], [[Jinping An]], [[Ying Xu]], [[Craig N. Jenne]], [[Niko Foger]], [[Ricardo U. Sorensen]], [[Christopher C. Goodnow]], [[James E. Bear]], [[Jennifer M. Puck]] & [[Jason G. Cyster]]
  | title = The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency
  | title = The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency
Line 224: Line 224:


==Winged helix deficiency/Nude SCID==
==Winged helix deficiency/Nude SCID==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by a mutation in the FOXN1 gene(a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. <ref>{{Cite journal
*It is caused by a mutation in the [[FOXN1]] gene (a transcription factor essential for the development and function of thymic epithelial cells) on [[chromosome 17]]. <ref>{{Cite journal
  | author = [[M. Schorpp]], [[M. Hofmann]], [[T. N. Dear]] & [[T. Boehm]]
  | author = [[M. Schorpp]], [[M. Hofmann]], [[T. N. Dear]] & [[T. Boehm]]
  | title = Characterization of mouse and human nude genes
  | title = Characterization of mouse and human nude genes
Line 247: Line 247:
  | pmid = 27548434
  | pmid = 27548434
}}</ref>
}}</ref>
*Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.<ref>{{Cite journal
*Patients usually have the clinical triad of athymia, congenital [[alopecia universalis]] and nail [[dystrophy]] and present in early few months of life with severe, recurrent [[infections]].<ref>{{Cite journal
  | author = [[C. Pignata]], [[M. Fiore]], [[V. Guzzetta]], [[A. Castaldo]], [[G. Sebastio]], [[F. Porta]] & [[A. Guarino]]
  | author = [[C. Pignata]], [[M. Fiore]], [[V. Guzzetta]], [[A. Castaldo]], [[G. Sebastio]], [[F. Porta]] & [[A. Guarino]]
  | title = Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs
  | title = Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs
Line 258: Line 258:
  | doi = 10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O
  | doi = 10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O
  | pmid = 8911612
  | pmid = 8911612
}}</ref>CNS defects have also been reported which include anencephaly and spina bifida.<ref>{{Cite journal
}}</ref>CNS defects have also been reported which include [[anencephaly]] and [[spina bifida]].<ref>{{Cite journal
  | author = [[S. Amorosi]], [[M. D'Armiento]], [[G. Calcagno]], [[I. Russo]], [[M. Adriani]], [[A. M. Christiano]], [[L. Weiner]], [[J. L. Brissette]] & [[C. Pignata]]
  | author = [[S. Amorosi]], [[M. D'Armiento]], [[G. Calcagno]], [[I. Russo]], [[M. Adriani]], [[A. M. Christiano]], [[L. Weiner]], [[J. L. Brissette]] & [[C. Pignata]]
  | title = FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus
  | title = FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus
Line 296: Line 296:


==ADA deficiency==
==ADA deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the adenosine deaminase gene (ADA) on chromosome 20.
*It is caused by homozygous or compound heterozygous mutation in the [[adenosine deaminase]] gene (ADA) on [[Chromosome 20 (human)|chromosome 20]].
*Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, nystagmus, sensorineural deafness and cognitive defects, and also hepatic dysfucnction.<ref>{{Cite journal
*Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, [[nystagmus]], [[sensorineural deafness]] and cognitive defects, and also hepatic dysfucnction.<ref>{{Cite journal
  | author = [[H. Ratech]], [[M. A. Greco]], [[G. Gallo]], [[D. L. Rimoin]], [[H. Kamino]] & [[R. Hirschhorn]]
  | author = [[H. Ratech]], [[M. A. Greco]], [[G. Gallo]], [[D. L. Rimoin]], [[H. Kamino]] & [[R. Hirschhorn]]
  | title = Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations
  | title = Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations
Line 332: Line 332:
}}</ref>
}}</ref>
*Treatment options include:
*Treatment options include:
*#Enzyme replacement therapy: PEG-ADA is used as the replacement therapy.<ref>{{Cite journal
*#Enzyme replacement therapy: Pegademase bovine (PEG-ADA) is used as the replacement therapy.<ref>{{Cite journal
  | author = [[M. S. Hershfield]]
  | author = [[M. S. Hershfield]]
  | title = PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency
  | title = PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency
Line 344: Line 344:
  | pmid = 7749407
  | pmid = 7749407
}}</ref>
}}</ref>
*#Bone marrow transplantation.<ref>{{Cite journal
*#[[Bone marrow transplantation]].<ref>{{Cite journal
  | author = [[R. H. Buckley]], [[S. E. Schiff]], [[R. I. Schiff]], [[L. Markert]], [[L. W. Williams]], [[J. L. Roberts]], [[L. A. Myers]] & [[F. E. Ward]]
  | author = [[R. H. Buckley]], [[S. E. Schiff]], [[R. I. Schiff]], [[L. Markert]], [[L. W. Williams]], [[J. L. Roberts]], [[L. A. Myers]] & [[F. E. Ward]]
  | title = Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency
  | title = Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency
Line 358: Line 358:


==Reticular dysgenesis==
==Reticular dysgenesis==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1.
*It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene ([[AK2]]) on [[chromosome 1]].
*Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss.
*Patients present with [[agranulocytosis]], [[lymphopenia]] and [[sensorineural hearing loss]].
*Bone marrow transplant is the treatment of choice.<ref>{{Cite journal
*[[Bone marrow transplant]] is the treatment of choice.<ref>{{Cite journal
  | author = [[R. J. Levinsky]] & [[K. Tiedeman]]
  | author = [[R. J. Levinsky]] & [[K. Tiedeman]]
  | title = Successful bone-marrow transplantation for reticular dysgenesis
  | title = Successful bone-marrow transplantation for reticular dysgenesis
Line 374: Line 374:


==DNA Ligase IV deficiency==
==DNA Ligase IV deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13.
*It is caused by homozygous or compound heterozygous mutation in the [[LIG4]] gene on [[chromosome 13]].
*Patients show unusual facial features, microcephaly, developmental delay, pancytopenia, and various skin abnormalities.<ref>{{Cite journal
*Patients show unusual facial features, [[microcephaly]], [[developmental delay]], [[Pancytopenia|pancytopenia,]] and various skin abnormalities.<ref>{{Cite journal
  | author = [[M. O'Driscoll]], [[K. M. Cerosaletti]], [[P. M. Girard]], [[Y. Dai]], [[M. Stumm]], [[B. Kysela]], [[B. Hirsch]], [[A. Gennery]], [[S. E. Palmer]], [[J. Seidel]], [[R. A. Gatti]], [[R. Varon]], [[M. A. Oettinger]], [[H. Neitzel]], [[P. A. Jeggo]] & [[P. Concannon]]
  | author = [[M. O'Driscoll]], [[K. M. Cerosaletti]], [[P. M. Girard]], [[Y. Dai]], [[M. Stumm]], [[B. Kysela]], [[B. Hirsch]], [[A. Gennery]], [[S. E. Palmer]], [[J. Seidel]], [[R. A. Gatti]], [[R. Varon]], [[M. A. Oettinger]], [[H. Neitzel]], [[P. A. Jeggo]] & [[P. Concannon]]
  | title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency
  | title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency
Line 389: Line 389:
      
      
==CERNUNNOS/XLF deficiency==
==CERNUNNOS/XLF deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by mutations in the NHEJ1 gene on chromosome 2.  
*It is caused by mutations in the [[NHEJ1]] gene on [[chromosome 2]].  
*It is characterized by microcephaly, growth retardation and sensitivity to ionizing radiation.<ref>{{Cite journal
*It is characterized by [[microcephaly]], [[growth retardation]] and sensitivity to ionizing radiation.<ref>{{Cite journal
  | author = [[Dietke Buck]], [[Laurent Malivert]], [[Regina de Chasseval]], [[Anne Barraud]], [[Marie-Claude Fondaneche]], [[Ozden Sanal]], [[Alessandro Plebani]], [[Jean-Louis Stephan]], [[Markus Hufnagel]], [[Francoise le Deist]], [[Alain Fischer]], [[Anne Durandy]], [[Jean-Pierre de Villartay]] & [[Patrick Revy]]
  | author = [[Dietke Buck]], [[Laurent Malivert]], [[Regina de Chasseval]], [[Anne Barraud]], [[Marie-Claude Fondaneche]], [[Ozden Sanal]], [[Alessandro Plebani]], [[Jean-Louis Stephan]], [[Markus Hufnagel]], [[Francoise le Deist]], [[Alain Fischer]], [[Anne Durandy]], [[Jean-Pierre de Villartay]] & [[Patrick Revy]]
  | title = Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly
  | title = Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly
Line 405: Line 405:


==DNA PKcs deficiency==
==DNA PKcs deficiency==
*Autosomal recessive (AR) transmission.
*[[Autosomal recessive]] (AR) transmission.
*It is caused by a mutation in the PRKDC gene on chromosome 8.<ref>{{Cite journal
*It is caused by a mutation in the PRKDC gene on [[chromosome 8]].<ref>{{Cite journal
  | author = [[J. D. Sipley]], [[J. C. Menninger]], [[K. O. Hartley]], [[D. C. Ward]], [[S. P. Jackson]] & [[C. W. Anderson]]
  | author = [[J. D. Sipley]], [[J. C. Menninger]], [[K. O. Hartley]], [[D. C. Ward]], [[S. P. Jackson]] & [[C. W. Anderson]]
  | title = Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8
  | title = Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8
Line 419: Line 419:


==RAG 1/2 deficiency==
==RAG 1/2 deficiency==
*Autosomal recessive (AR) transmission.     
*[[Autosomal recessive]] (AR) transmission.     
*It is caused by homozygous or compound heterozygous mutations in the RAG1 and RAG2 genes on chromosome 11.<ref>{{Cite journal
*It is caused by homozygous or compound heterozygous mutations in the [[RAG1]] and [[RAG2]] genes on [[chromosome 11]].<ref>{{Cite journal
  | author = [[K. Schwarz]], [[G. H. Gauss]], [[L. Ludwig]], [[U. Pannicke]], [[Z. Li]], [[D. Lindner]], [[W. Friedrich]], [[R. A. Seger]], [[T. E. Hansen-Hagge]], [[S. Desiderio]], [[M. R. Lieber]] & [[C. R. Bartram]]
  | author = [[K. Schwarz]], [[G. H. Gauss]], [[L. Ludwig]], [[U. Pannicke]], [[Z. Li]], [[D. Lindner]], [[W. Friedrich]], [[R. A. Seger]], [[T. E. Hansen-Hagge]], [[S. Desiderio]], [[M. R. Lieber]] & [[C. R. Bartram]]
  | title = RAG mutations in human B cell-negative SCID
  | title = RAG mutations in human B cell-negative SCID
Line 431: Line 431:
  | pmid = 8810255
  | pmid = 8810255
}}</ref>
}}</ref>
*Patients present with persistent diarrhea, candidiasis, lung infections, fever, and opportunistic infections.<ref>{{Cite journal
*Patients present with persistent [[diarrhea]], [[candidiasis]], lung infections, [[fever]], and opportunistic infections.<ref>{{Cite journal
  | author = [[J. L. Stephan]], [[V. Vlekova]], [[F. Le Deist]], [[S. Blanche]], [[J. Donadieu]], [[G. De Saint-Basile]], [[A. Durandy]], [[C. Griscelli]] & [[A. Fischer]]
  | author = [[J. L. Stephan]], [[V. Vlekova]], [[F. Le Deist]], [[S. Blanche]], [[J. Donadieu]], [[G. De Saint-Basile]], [[A. Durandy]], [[C. Griscelli]] & [[A. Fischer]]
  | title = Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients
  | title = Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients
Line 444: Line 444:


==DCLRE1C deficiency==
==DCLRE1C deficiency==
*Autosomal recessive (AR) transmission.   
*[[Autosomal recessive]] (AR) transmission.   
*It is caused by mutation in the gene encoding Artemis in chromosome 10.<ref>{{Cite journal
*It is caused by mutation in the gene encoding [[Artemis (protein)|Artemis]] in [[chromosome 10]].<ref>{{Cite journal
  | author = [[L. Li]], [[D. Drayna]], [[D. Hu]], [[A. Hayward]], [[S. Gahagan]], [[H. Pabst]] & [[M. J. Cowan]]
  | author = [[L. Li]], [[D. Drayna]], [[D. Hu]], [[A. Hayward]], [[S. Gahagan]], [[H. Pabst]] & [[M. J. Cowan]]
  | title = The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p
  | title = The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p

Revision as of 18:17, 2 November 2018


Immunodeficiency Main Page

Home

Overview

Classification

Immunodeficiency Affecting Cellular and Humoral Immunity

Combined Immunodeficiency

Predominantly Antibody Deficiency

Diseases of Immune Dysregulation

Congenital Defects of Phagocytes

Defects in Intrinsic and Innate Immunity

Auto-inflammatory Disorders

Complement Deficiencies

Phenocopies of Primary Immunodeficiency

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Zahir Ali Shaikh, MD[3], Anmol Pitliya, M.B.B.S. M.D.[4], Syed Musadiq Ali M.B.B.S.[5]

Overview

Classification


 
 
Immunodeficiency affecting cellular and humoral immunity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Severe combined immunodeficiencies SCID, defined
by CD3 T cell lymphopenia
 
Combined immunodeficiencies generally less pronounced
than severe combined immunodeficiency
 


Severe Combined Immunodeficiency (SCID)


 
 
 
 
 
 
 
 
 
Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD19 NL: SCID T-ve B+ve
 
 
 
 
 
 
 
CD19 ↓: SCID T-ve B-ve
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SCID T-ve B+ve NK-ve
 
 
 
SCID T-ve B+ve NK+ve
 
SCID T-ve B-ve NK-ve
 
 
 
SCID T-ve B-ve NK+ve
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yc deficiency
 
 
 
 
IL7Ra .
 
 
ADA def
 
Microcephaly present
 
 
Microcephaly absent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
JAK-3 def
 
 
 
 
CD3D, CD3E, CD247
 
 
Reticular dysgenesis
 
 
 
DNA Ligase IV def
 
 
 
RAG1/2 def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD45 def
 
 
 
 
 
 
 
XLF def
 
 
 
DCLRE1C def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coronin-1A def
 
 
 
 
 
 
 
DNA PKcs def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Winged helix def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency


 
 
 
 
 
 
 
 
 
 
 
 
 
Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Low CD4: MHC II Expression?
 
 
Low CD8
 
 
Low B Cells
 
 
 
Ig: Often Normal
 
 
Ig Low
 
 
Normal Ig but Low Specific Antibody Response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Absent: MHCII Deficiency
 
 
 
CD8 def:
 
 
 
DOCK8 def:
 
 
 
 
CD3Y def:
 
 
 
DOCK2 def:
 
 
 
IL2IR Def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Present: MAGT 1 Def:,LCK Def:, UNC119 Def:
 
 
 
ZAP70 def:
 
 
 
MST1 def:
 
 
 
 
RHOH def:
 
 
 
CARDII def:(LOF)
 
 
 
MALT1 Def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MHC1 def:
 
 
 
IL21 def:
 
 
 
 
TCR alpha def:
 
 
 
BCL10 def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NIK def:
 
 
 
 
BCL11B def:
 
 
 
IKBKB Def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moesin def:
 
 
 
 
OX40 def:
 
 
 
ICOS def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LAT def
 
 
 
TFRC def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RelB def:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD40 ligand def:(CD154)
 
 
 
 
 
 
 


γc (IL-2Rγ) deficiency

  • X-linked transmission.
  • It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG).
  • Patients present with repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.[1]
  • HSCT is the mainstay of treatment.[2]

JAK-3 deficiency

IL7a

CD3D

CD3E

CD247

CD45 deficiency

Coronin-1A deficiency

Winged helix deficiency/Nude SCID

  • Autosomal recessive (AR) transmission.
  • It is caused by a mutation in the FOXN1 gene (a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. [13][14]
  • Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.[15]CNS defects have also been reported which include anencephaly and spina bifida.[16]
  • Initial management includes immediate referral to a specialist center in suspected patients and providing supportive care until a definitive diagnosis reached.[17]
  • Prophylaxis and early treatment of infections is also an important step in management.[18]

ADA deficiency

Reticular dysgenesis

DNA Ligase IV deficiency

CERNUNNOS/XLF deficiency

DNA PKcs deficiency

RAG 1/2 deficiency

DCLRE1C deficiency

Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency

MHC II Deficiency

  • MHC class II deficiency, called as the bare lymphocyte syndrome type II.
  • a rare autosomal recessive disorder.
  • Lack of constitutive and inducible MHC class II expression in all cell types and tissues.[31]

References

  1. W. H. HITZIG & H. WILLI (1961). "[Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")]". Schweizerische medizinische Wochenschrift. 91: 1625–1633. PMID 13907792. Unknown parameter |month= ignored (help)
  2. Fred S. Rosen (2002). "Successful gene therapy for severe combined immunodeficiency". The New England journal of medicine. 346 (16): 1241–1243. doi:10.1056/NEJM200204183461612. PMID 11961154. Unknown parameter |month= ignored (help)
  3. F. Candotti, S. A. Oakes, J. A. Johnston, S. Giliani, R. F. Schumacher, P. Mella, M. Fiorini, A. G. Ugazio, R. Badolato, L. D. Notarangelo, F. Bozzi, P. Macchi, D. Strina, P. Vezzoni, R. M. Blaese, J. J. O'Shea & A. Villa (1997). "Structural and functional basis for JAK3-deficient severe combined immunodeficiency". Blood. 90 (10): 3996–4003. PMID 9354668. Unknown parameter |month= ignored (help)
  4. Joseph L. Roberts, Andrea Lengi, Stephanie M. Brown, Min Chen, Yong-Jie Zhou, John J. O'Shea & Rebecca H. Buckley (2004). "Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation". Blood. 103 (6): 2009–2018. doi:10.1182/blood-2003-06-2104. PMID 14615376. Unknown parameter |month= ignored (help)
  5. A. Puel, S. F. Ziegler, R. H. Buckley & W. J. Leonard (1998). "Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency". Nature genetics. 20 (4): 394–397. doi:10.1038/3877. PMID 9843216. Unknown parameter |month= ignored (help)
  6. C. M. Roifman, J. Zhang, D. Chitayat & N. Sharfe (2000). "A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency". Blood. 96 (8): 2803–2807. PMID 11023514. Unknown parameter |month= ignored (help)
  7. P. van den Elsen, G. Bruns, D. S. Gerhard, D. Pravtcheva, C. Jones, D. Housman, F. A. Ruddle, S. Orkin & C. Terhorst (1985). "Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9". Proceedings of the National Academy of Sciences of the United States of America. 82 (9): 2920–2924. PMID 3857625. Unknown parameter |month= ignored (help)
  8. Grace P. Yu, Kari C. Nadeau, David R. Berk, Genevieve de Saint Basile, Nathalie Lambert, Perrine Knapnougel, Joseph Roberts, Kristina Kavanau, Elizabeth Dunn, E. Richard Stiehm, David B. Lewis, Dale T. Umetsu, Jennifer M. Puck & Morton J. Cowan (2011). "Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID". Pediatric transplantation. 15 (7): 733–741. doi:10.1111/j.1399-3046.2011.01563.x. PMID 21883749. Unknown parameter |month= ignored (help)
  9. D. P. Gold, J. J. van Dongen, C. C. Morton, G. A. Bruns, P. van den Elsen, A. H. Geurts van Kessel & C. Terhorst (1987). "The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice". Proceedings of the National Academy of Sciences of the United States of America. 84 (6): 1664–1668. PMID 2882512. Unknown parameter |month= ignored (help)
  10. A. M. Weissman, D. Hou, D. G. Orloff, W. S. Modi, H. Seuanez, S. J. O'Brien & R. D. Klausner (1988). "Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex". Proceedings of the National Academy of Sciences of the United States of America. 85 (24): 9709–9713. PMID 2974162. Unknown parameter |month= ignored (help)
  11. M. F. Seldin, H. C. Morse, R. C. LeBoeuf & A. D. Steinberg (1988). "Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q". Genomics. 2 (1): 48–56. PMID 3384439. Unknown parameter |month= ignored (help)
  12. Lawrence R. Shiow, David W. Roadcap, Kenneth Paris, Susan R. Watson, Irina L. Grigorova, Tonya Lebet, Jinping An, Ying Xu, Craig N. Jenne, Niko Foger, Ricardo U. Sorensen, Christopher C. Goodnow, James E. Bear, Jennifer M. Puck & Jason G. Cyster (2008). "The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency". Nature immunology. 9 (11): 1307–1315. doi:10.1038/ni.1662. PMID 18836449. Unknown parameter |month= ignored (help)
  13. M. Schorpp, M. Hofmann, T. N. Dear & T. Boehm (1997). "Characterization of mouse and human nude genes". Immunogenetics. 46 (6): 509–515. PMID 9321431.
  14. Saulius Zuklys, Adam Handel, Saule Zhanybekova, Fatima Govani, Marcel Keller, Stefano Maio, Carlos E. Mayer, Hong Ying Teh, Katrin Hafen, Giuseppe Gallone, Thomas Barthlott, Chris P. Ponting & Georg A. Hollander (2016). "Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells". Nature immunology. 17 (10): 1206–1215. doi:10.1038/ni.3537. PMID 27548434. Unknown parameter |month= ignored (help)
  15. C. Pignata, M. Fiore, V. Guzzetta, A. Castaldo, G. Sebastio, F. Porta & A. Guarino (1996). "Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs". American journal of medical genetics. 65 (2): 167–170. doi:10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O. PMID 8911612. Unknown parameter |month= ignored (help)
  16. S. Amorosi, M. D'Armiento, G. Calcagno, I. Russo, M. Adriani, A. M. Christiano, L. Weiner, J. L. Brissette & C. Pignata (2008). "FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus". Clinical genetics. 73 (4): 380–384. doi:10.1111/j.1399-0004.2008.00977.x. PMID 18339010. Unknown parameter |month= ignored (help)
  17. Lizzy Rivers & H. Bobby Gaspar (2015). "Severe combined immunodeficiency: recent developments and guidance on clinical management". Archives of disease in childhood. 100 (7): 667–672. doi:10.1136/archdischild-2014-306425. PMID 25564533. Unknown parameter |month= ignored (help)
  18. Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter |month= ignored (help)
  19. H. Ratech, M. A. Greco, G. Gallo, D. L. Rimoin, H. Kamino & R. Hirschhorn (1985). "Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations". The American journal of pathology. 120 (1): 157–169. PMID 4014441. Unknown parameter |month= ignored (help)
  20. R. Hirschhorn, P. S. Paageorgiou, H. H. Kesarwala & L. T. Taft (1980). "Amerioration of neurologic abnormalities after "enzyme replacement" in adenosine deaminase deficiency". The New England journal of medicine. 303 (7): 377–380. doi:10.1056/NEJM198008143030706. PMID 6156414. Unknown parameter |month= ignored (help)
  21. M. E. Bollinger, F. X. Arredondo-Vega, I. Santisteban, K. Schwarz, M. S. Hershfield & H. M. Lederman (1996). "Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency". The New England journal of medicine. 334 (21): 1367–1371. doi:10.1056/NEJM199605233342104. PMID 8614422. Unknown parameter |month= ignored (help)
  22. M. S. Hershfield (1995). "PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency". Human mutation. 5 (2): 107–112. doi:10.1002/humu.1380050202. PMID 7749407.
  23. R. H. Buckley, S. E. Schiff, R. I. Schiff, L. Markert, L. W. Williams, J. L. Roberts, L. A. Myers & F. E. Ward (1999). "Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency". The New England journal of medicine. 340 (7): 508–516. doi:10.1056/NEJM199902183400703. PMID 10021471. Unknown parameter |month= ignored (help)
  24. R. J. Levinsky & K. Tiedeman (1983). "Successful bone-marrow transplantation for reticular dysgenesis". Lancet (London, England). 1 (8326 Pt 1): 671–672. PMID 6132037. Unknown parameter |month= ignored (help)
  25. M. O'Driscoll, K. M. Cerosaletti, P. M. Girard, Y. Dai, M. Stumm, B. Kysela, B. Hirsch, A. Gennery, S. E. Palmer, J. Seidel, R. A. Gatti, R. Varon, M. A. Oettinger, H. Neitzel, P. A. Jeggo & P. Concannon (2001). "DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency". Molecular cell. 8 (6): 1175–1185. PMID 11779494. Unknown parameter |month= ignored (help)
  26. Dietke Buck, Laurent Malivert, Regina de Chasseval, Anne Barraud, Marie-Claude Fondaneche, Ozden Sanal, Alessandro Plebani, Jean-Louis Stephan, Markus Hufnagel, Francoise le Deist, Alain Fischer, Anne Durandy, Jean-Pierre de Villartay & Patrick Revy (2006). "Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly". Cell. 124 (2): 287–299. doi:10.1016/j.cell.2005.12.030. PMID 16439204. Unknown parameter |month= ignored (help)
  27. J. D. Sipley, J. C. Menninger, K. O. Hartley, D. C. Ward, S. P. Jackson & C. W. Anderson (1995). "Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8". Proceedings of the National Academy of Sciences of the United States of America. 92 (16): 7515–7519. PMID 7638222. Unknown parameter |month= ignored (help)
  28. K. Schwarz, G. H. Gauss, L. Ludwig, U. Pannicke, Z. Li, D. Lindner, W. Friedrich, R. A. Seger, T. E. Hansen-Hagge, S. Desiderio, M. R. Lieber & C. R. Bartram (1996). "RAG mutations in human B cell-negative SCID". Science (New York, N.Y.). 274 (5284): 97–99. PMID 8810255. Unknown parameter |month= ignored (help)
  29. J. L. Stephan, V. Vlekova, F. Le Deist, S. Blanche, J. Donadieu, G. De Saint-Basile, A. Durandy, C. Griscelli & A. Fischer (1993). "Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients". The Journal of pediatrics. 123 (4): 564–572. PMID 8410508. Unknown parameter |month= ignored (help)
  30. L. Li, D. Drayna, D. Hu, A. Hayward, S. Gahagan, H. Pabst & M. J. Cowan (1998). "The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p". American journal of human genetics. 62 (1): 136–144. doi:10.1086/301688. PMID 9443881. Unknown parameter |month= ignored (help)
  31. Mach B, Steimle V, Martinez-Soria E, Reith W (1996). "Regulation of MHC class II genes: lessons from a disease". Annu. Rev. Immunol. 14: 301–31. doi:10.1146/annurev.immunol.14.1.301. PMID 8717517.