Immune checkpoint

Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Cancers considered "hot tumors", such as melanoma, contain antitumor T cells and may respond to checkpoint inhibitor antibodies[1].

Immune checkpoint inhibitors

Monoclonal antibodies are a type of cancer immunotherapy that have been developed to target immune checkpoints. These checkpoints down-regulate programmed cell death 1 or apoptosis. Cancer immunotherapy to block these checkpoints may encourage apoptosis of cancer cells.

Drug toxicities include[2][3][4]:

  • Gastrointestinal
  • Dermatologic
  • Endocrine
  • Exacerbation of pre-existing autoimmune disease[5].

PD-1 inhibitors

These antibodies can activate the immune system to attack cancers. These antibodies target the Programmed Cell Death 1 Receptor (PD-1 Receptor or CD279). Programmed Cell Death Type I is also known as apoptosis. The PD-1 Receptor is "an inhibitory T-lymphocyte receptor that has specificity for CD274 antigen and Programmed Cell Death 1 Ligand 2 Protein."[6][7]

Pembrolizumab is a 'humanized monoclonal IgG4 kappa isotype antibody against PD-1'.[8] Pembrolizumab was approved by the FDA for “patients with unresectable or metastatic, microsatellite-instability–high (MSI-H) or mismatch-repair–deficient (dMMR) solid tumors, regardless of tumor site or histology”. [9] Pembrolizumab creates more objective tumor response among tumors in which at least 50% of its cells express PD-L1[8].

Nivolumab may case drug toxicity in about 40% of patients - rash and diarrhea are the most common effects[10].

Examples:

PD-L1 inhibitors

These antibodies can activate the immune system to attack cancers. These antibodies target PD-L1, or cluster of differentiation 274 (CD274) which is the transmembrane protein ligand to PD-1.

CTLA-4 blockade

The CTLA-4 Antigen is "an inhibitory T cell receptor that is closely related to CD28 antigen. It has specificity for CD80 antigen and CD86 antigen and acts as a negative regulator of peripheral T cell function. CTLA-4 antigen is believed to play role in inducing peripheral tolerance."[11]

Ipilimumab may cause autoimmune pituitary disease[12] and exacerbate autoimmune disease in recipients with pre-existing autoimmune disease[13]. The U.S. FDA has issued guidance on managing side effects.[14][15]

Examples:

Raf protein kinase inhibitors

Raf inhibitors are "a family of closely-related serine-threonine kinases that were originally identified as the cellular homologs of the retrovirus-derived V-RAF kinases. They are MAP kinase kinase kinases that play important roles in signal transduction."[16]

Examples:

Vaccines

Vaccines may provide immunotherapy of cancers[1].

See also

References

  1. 1.0 1.1 Schlom J, Gulley JL. Vaccines as an Integral Component of Cancer Immunotherapy. JAMA. Published online November 08, 2018. doi:10.1001/jama.2018.9511
  2. Bourke JM, O'Sullivan M, Khattak MA (2016). "Management of adverse events related to new cancer immunotherapy (immune checkpoint inhibitors)". Med J Aust. 205 (9): 418–424. PMID 27809739.
  3. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE; et al. (2017). "Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis". JAMA Oncol. doi:10.1001/jamaoncol.2017.3064. PMID 28973656.
  4. Postow et al. http://www.nejm.org/doi/full/10.1056/NEJMra1703481 NEJM 2018
  5. Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME (2018). "Use of Immune Checkpoint Inhibitors in the Treatment of Patients With Cancer and Preexisting Autoimmune Disease: A Systematic Review". Ann Intern Med. doi:10.7326/M17-2073. PMID 29297009.
  6. Anonymous (2024), Programmed Cell Death 1 Receptor (English). Medical Subject Headings. U.S. National Library of Medicine.
  7. Boussiotis VA (2016). "Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway". N Engl J Med. 375 (18): 1767–1778. doi:10.1056/NEJMra1514296. PMC 5575761. PMID 27806234.
  8. 8.0 8.1 Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP; et al. (2015). "Pembrolizumab for the treatment of non-small-cell lung cancer". N Engl J Med. 372 (21): 2018–28. doi:10.1056/NEJMoa1501824. PMID 25891174.
  9. Lemery S, Keegan P, Pazdur R (2017). "First FDA Approval Agnostic of Cancer Site - When a Biomarker Defines the Indication". N Engl J Med. 377 (15): 1409–1412. doi:10.1056/NEJMp1709968. PMID 29020592.
  10. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF; et al. (2012). "Safety, activity, and immune correlates of anti-PD-1 antibody in cancer". N Engl J Med. 366 (26): 2443–54. doi:10.1056/NEJMoa1200690. PMC 3544539. PMID 22658127.
  11. Anonymous (2024), CTLA-4 Antigen (English). Medical Subject Headings. U.S. National Library of Medicine.
  12. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F (2013). "Endocrine side effects induced by immune checkpoint inhibitors". J Clin Endocrinol Metab. 98 (4): 1361–75. doi:10.1210/jc.2012-4075. PMID 23471977.
  13. Johnson DB, Sullivan RJ, Ott PA, Carlino MS, Khushalani NI, Ye F; et al. (2016). "Ipilimumab Therapy in Patients With Advanced Melanoma and Preexisting Autoimmune Disorders". JAMA Oncol. 2 (2): 234–40. doi:10.1001/jamaoncol.2015.4368. PMID 26633184.
  14. https://www.fda.gov/downloads/Drugs/DrugSafety/PostMarketDrugsafetyInformationforPatientsandProviders/UCM249435.pdf
  15. https://dailymed.nlm.nih.gov/dailymed/search.cfm?labeltype=all&query=ipilimumab
  16. Template:Mesh