Hypobetalipoproteinemia: Difference between revisions

Jump to navigation Jump to search
Line 101: Line 101:
|Age of Presentation
|Age of Presentation
|Infancy
|Infancy
|Asymtomatic
|Asymptomatic
|2months to 1 year
|2months to 1 year
|Asymtomatic
|Asymptomatic
|-
|-
|Clinical Symptoms
|Clinical Symptoms

Revision as of 18:29, 16 November 2016

WikiDoc Resources for Hypobetalipoproteinemia

Articles

Most recent articles on Hypobetalipoproteinemia

Most cited articles on Hypobetalipoproteinemia

Review articles on Hypobetalipoproteinemia

Articles on Hypobetalipoproteinemia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Hypobetalipoproteinemia

Images of Hypobetalipoproteinemia

Photos of Hypobetalipoproteinemia

Podcasts & MP3s on Hypobetalipoproteinemia

Videos on Hypobetalipoproteinemia

Evidence Based Medicine

Cochrane Collaboration on Hypobetalipoproteinemia

Bandolier on Hypobetalipoproteinemia

TRIP on Hypobetalipoproteinemia

Clinical Trials

Ongoing Trials on Hypobetalipoproteinemia at Clinical Trials.gov

Trial results on Hypobetalipoproteinemia

Clinical Trials on Hypobetalipoproteinemia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Hypobetalipoproteinemia

NICE Guidance on Hypobetalipoproteinemia

NHS PRODIGY Guidance

FDA on Hypobetalipoproteinemia

CDC on Hypobetalipoproteinemia

Books

Books on Hypobetalipoproteinemia

News

Hypobetalipoproteinemia in the news

Be alerted to news on Hypobetalipoproteinemia

News trends on Hypobetalipoproteinemia

Commentary

Blogs on Hypobetalipoproteinemia

Definitions

Definitions of Hypobetalipoproteinemia

Patient Resources / Community

Patient resources on Hypobetalipoproteinemia

Discussion groups on Hypobetalipoproteinemia

Patient Handouts on Hypobetalipoproteinemia

Directions to Hospitals Treating Hypobetalipoproteinemia

Risk calculators and risk factors for Hypobetalipoproteinemia

Healthcare Provider Resources

Symptoms of Hypobetalipoproteinemia

Causes & Risk Factors for Hypobetalipoproteinemia

Diagnostic studies for Hypobetalipoproteinemia

Treatment of Hypobetalipoproteinemia

Continuing Medical Education (CME)

CME Programs on Hypobetalipoproteinemia

International

Hypobetalipoproteinemia en Espanol

Hypobetalipoproteinemia en Francais

Business

Hypobetalipoproteinemia in the Marketplace

Patents on Hypobetalipoproteinemia

Experimental / Informatics

List of terms related to Hypobetalipoproteinemia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2]

Synonyms and keywords: Familial hypobetalipoproteinemia, FHBL, normotriglyceridemic hypobetalipoproteinemia

Overview

It is a rare disease caused by mutation in the APOB gene or less commonly in the PCSK9 gene, characteristic findings include low plasma level of total cholesterol, low LDL C, and Apo B below the 5th percentile when compared to the normal population.

Historical Perspective

  • In 1960, Salt reported absence of betalipoprotein in the plasma of a patient associated with very low cholesterol levels in the parents. Low cholesterol levels in the parents differentiates it from abetalipoproteinemia[1].

Pathophysiology

Pathogenesis

  • Cholesterol and triglycerides are insolublei in the plasma, so they require a transport protien in the form of apolipoprotein B. These lipoproteins transport cholesterol and trigylcerides in spherical particles in which the cholesterol esters and triglyceride form the central core.
  • Apolipoprotein B is the major carrier for triglycerides and cholesterol from the intestine and liver to the periphery.
  • Apo B exits in two forms, Apo B48 and Apo B100.


 
 
 
APOB gene is responsible for the productoion of Apo B48 in intestine which is critical for the formation and secretion of chylomicrons[2] , and Apo B100 in the liver which is released into circulation as VLDL
 
Mutation in the APOB gene affects the translation of mRNA of Apo B. The severity depends whether the patient is homozygous or heterozygous for the mutation.[3].
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MTP transfers triglycerides from cytsol onto nacent ApoB in endoplasmic reticulum which is required for assembly and secretion of VLDL and chylomicrons.Mutation in MTP causes abetalipoproteinemia[4].
 
In Apo B48 associated chylomicrons, transport of protiens from endoplasmic reticulum to golgi complex is dependent on coat protien complex 2(COP II), secretion-associated, Ras-related GTPase 1B (Sar1b) encoded by the gene SARA2 is a major part of the protein essential for this intra cellular transport[5]. Mutation in Sar1b causes chylomicron retention disease[6].
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the periphery by the action of lipoprotein lipase in the endothelium of the capillaries and glycosylphosphatidylinositol-anchored high-density lipoprotein- binding protein 1 (GPIHBP1)[7], a transporter for lipoprotien lipase triglycerides are hydrolysed to form free fatty acids and glycerol
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This results in the formation of VLDL remnant( Intermediate density lipoprotein) and chylomicron remnants The lipases are inhibited by Angiopoietin-like protein 3 (ANGPTL3) thereby decreasing the triglyceride and LDL C[8].[9]
 
Loss of function mutations or complete absence of ANGPTL3 gene cause familial combined hypolipidemia [10][11] .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IDL on further removal of triglycerides forms a cholesterol ester rich LDL C, the chylomicron and VLDL remnants removal is Apo E dependent via the LDL receptors and LDL receptor related protiens[12]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LDL C is removed from the circulation by binding to LDL receptors in the liver. The receptor degradation is enhanced by Proprotein convertase subtilisin kexin 9 (PCSK9)[13].
 
Mutation causing loss of function of the enzyme causes low LDL C levels, and gain of function mutations are associated with familial hypercholesterolemia[14].
 
 

Genetics

  • Mutation in the APOB gene on chromosome 2p24 which codes for apolipoprotein B.
  • Autosomal codominant disorder.
  • Mutation in the PCSK9 can also cause the disease but it is less common compared to the mutation in Apo B.
Homozygous familial

hypobetalipoproteinemia

Heterozygous familial

hypobetalipoprotienemia

Chylomicron Retention

Disease

Familial Combined

Hypolipidemia

Inheritance Autosomal Codominant Autosomal codominant Autosomal Recessive Autosomal Codominant
Defective Gene APOB APOB SARA 2 ANGPTL3
Pathophysiology Absence of Apo B

results in absent plasma

VLDL, TG and LDL C.

Truncated Apo B protiens are formed

which affect the lipidation and secretion of the Apo B particles.

These poorly lipidated particles are are rapidly catabolized.

Intracellular transport of chylomicrons is affected ,

resulting in the accumalation of chylomicrons in the cell.

Loss of function mutation results in the failure of inhibition of

Lipoprotien lipase, leading to low

LDL, VLDL and HDL levels.

Classification

Natural History, complications and Prognosis

Diagnosis

History and Physical

Homozygous Familial

Hypobetalipoproteinemia

Heterozygous Familial

Hypobetalipoproteinemia

Chylomicron Retention

Disease

Familial Combined

Hypolipidemia

Age of Presentation Infancy Asymptomatic 2months to 1 year Asymptomatic
Clinical Symptoms Steatorrhea, Failure to Thrive.

Symptoms progress with age to

reduced visual acuity, ataxia,

dysarthria, loss of vibration and

proprioception as the posterior

columns are affected.

Patients are asymptomatic,

Common feature is hepatic

steatosis.

Steatorrhea, Features of

Vitamin E deficieny.

Laboratory Results

Treatment=

Medical Therapy

Surgical Therapy

Prevention

Hypobetalipoproteinemia is a rare autosomal dominant genetic disorder causing abnormally low levels of LDL cholesterol and apolipoprotein B.[15] It is thought to be caused by a mutation in apolipoprotein B.[16] The patient can have low LDL level and simultaneously have high levels of HDL cholesterol. Typically in hypobtalipoproteinemia, plasma cholesterol levels will be around 80-120 mg/dL, LDL cholesterol will be around 50-80 mg/dL, and longevity can be expected with good nutrition. Affected individuals can be either homozygous or heterozygous, the latter being most commonly asymptomatic.[16]


Normotriglyceridemic hypobetalipoproteinemia, formally called normotriglyceridemic abetalipoproteinemia, is a condition characterized by absence of LDLs and apoB100 and normal triglyceride-rich lipoproteins.[17][18]


[19]


References

  1. SALT HB, WOLFF OH, LLOYD JK, FOSBROOKE AS, CAMERON AH, HUBBLE DV (1960). "On having no beta-lipoprotein. A syndrome comprising a-beta-lipoproteinaemia, acanthocytosis, and steatorrhoea". Lancet. 2 (7146): 325–9. PMID 13745738.
  2. Dash S, Xiao C, Morgantini C, Lewis GF (2015). "New Insights into the Regulation of Chylomicron Production". Annu Rev Nutr. 35: 265–94. doi:10.1146/annurev-nutr-071714-034338. PMID 25974693.
  3. Di Leo E, Eminoglu T, Magnolo L, Bolkent MG, Tümer L, Okur I; et al. (2015). "The Janus-faced manifestations of homozygous familial hypobetalipoproteinemia due to apolipoprotein B truncations". J Clin Lipidol. 9 (3): 400–5. doi:10.1016/j.jacl.2015.01.005. PMID 26073401.
  4. Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR (2000). "The role of the microsomal triglygeride transfer protein in abetalipoproteinemia". Annu Rev Nutr. 20: 663–97. doi:10.1146/annurev.nutr.20.1.663. PMID 10940349.
  5. Shoulders CC, Stephens DJ, Jones B (2004). "The intracellular transport of chylomicrons requires the small GTPase, Sar1b". Curr Opin Lipidol. 15 (2): 191–7. PMID 15017362.
  6. Jones B, Jones EL, Bonney SA, Patel HN, Mensenkamp AR, Eichenbaum-Voline S; et al. (2003). "Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders". Nat Genet. 34 (1): 29–31. doi:10.1038/ng1145. PMID 12692552.
  7. Young SG, Davies BS, Voss CV, Gin P, Weinstein MM, Tontonoz P; et al. (2011). "GPIHBP1, an endothelial cell transporter for lipoprotein lipase". J Lipid Res. 52 (11): 1869–84. doi:10.1194/jlr.R018689. PMC 3196223. PMID 21844202.
  8. Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML; et al. (2009). "The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms". J Biol Chem. 284 (3): 1419–24. doi:10.1074/jbc.M808477200. PMC 3769808. PMID 19028676.
  9. Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002). "Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase". J Lipid Res. 43 (11): 1770–2. PMID 12401877.
  10. Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, Hobbs HH; et al. (2009). "Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans". J Clin Invest. 119 (1): 70–9. doi:10.1172/JCI37118. PMC 2613476. PMID 19075393.
  11. Robciuc MR, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Öörni K; et al. (2013). "Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids". Arterioscler Thromb Vasc Biol. 33 (7): 1706–13. doi:10.1161/ATVBAHA.113.301397. PMID 23661675.
  12. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK (2008). "LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies". Physiol Rev. 88 (3): 887–918. doi:10.1152/physrev.00033.2007. PMC 2744109. PMID 18626063.
  13. Garvie CW, Fraley CV, Elowe NH, Culyba EK, Lemke CT, Hubbard BK; et al. (2016). "Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor". Protein Sci. 25 (11): 2018–2027. doi:10.1002/pro.3019. PMC 5079255. PMID 27534510.
  14. Marais AD, Kim JB, Wasserman SM, Lambert G (2015). "PCSK9 inhibition in LDL cholesterol reduction: genetics and therapeutic implications of very low plasma lipoprotein levels". Pharmacol Ther. 145: 58–66. doi:10.1016/j.pharmthera.2014.07.004. PMID 25046268.
  15. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C; et al. (2010). "Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia". N Engl J Med. 363 (23): 2220–7. doi:10.1056/NEJMoa1002926. PMC 3008575. PMID 20942659.
  16. 16.0 16.1 Schonfeld G, Lin X, Yue P (2005). "Familial hypobetalipoproteinemia: genetics and metabolism". Cell Mol Life Sci. 62 (12): 1372–8. doi:10.1007/s00018-005-4473-0. PMID 15818469.
  17. Harano Y, Kojima H, Nakano T, Harada M, Kashiwagi A, Nakajima Y; et al. (1989). "Homozygous hypobetalipoproteinemia with spared chylomicron formation". Metabolism. 38 (1): 1–7. PMID 2909827.
  18. Herbert PN, Hyams JS, Bernier DN, Berman MM, Saritelli AL, Lynch KM; et al. (1985). "Apolipoprotein B-100 deficiency. Intestinal steatosis despite apolipoprotein B-48 synthesis". J Clin Invest. 76 (2): 403–12. doi:10.1172/JCI111986. PMC 423826. PMID 4031057.
  19. Biemer JJ, McCammon RE (1975). "The genetic relationship of abetalipoproteinemia and hypobetalipoproteinemia: a report of the occurence of both diseases within the same family". J Lab Clin Med. 85 (4): 556–65. PMID 164511.

Template:WikiDoc Sources Template:WH