HIV AIDS drug resistance: Difference between revisions

Jump to navigation Jump to search
Line 5: Line 5:


==Etiology==
==Etiology==
As ART continues to expand, the emergence of some drug resistance is inevitable. Many factors leading to treatment failure and eventually drug resistance are as following:
*As ART continues to expand, the emergence of some drug resistance is inevitable. Many factors leading to treatment failure and eventually drug resistance are as following:
*Insufficient knowledge among patients and health workers.
** Insufficient knowledge among patients and health workers.
*Suboptimal adherence to treatment regimens.
** Suboptimal adherence to treatment regimens.
*Drug stock-outs.
** Drug stock-outs.
*Inadequate patient monitoring mechanisms.
** Inadequate patient monitoring mechanisms.
*Treatment optimism after the initial successes of HAART likely affected the subsequent dynamics of HIV because these favorable treatment outcomes led some persons to increase their high-risk behavior.


==Historical Perspective==
==Historical Perspective==

Revision as of 15:02, 30 May 2012

Template:HIV

Overview

The ability of HIV to mutate and reproduce itself in the presence of antiretroviral drugs is called HIV drug resistance. HIV Drug Resistance occurs when microevolution causes virions to become tolerant to antiretroviral treatments. Drug resistant virus will continue to replicate in the presence of the drug to which it has become resistant.

Etiology

  • As ART continues to expand, the emergence of some drug resistance is inevitable. Many factors leading to treatment failure and eventually drug resistance are as following:
    • Insufficient knowledge among patients and health workers.
    • Suboptimal adherence to treatment regimens.
    • Drug stock-outs.
    • Inadequate patient monitoring mechanisms.
  • Treatment optimism after the initial successes of HAART likely affected the subsequent dynamics of HIV because these favorable treatment outcomes led some persons to increase their high-risk behavior.

Historical Perspective

  • Over the past decade, access to ART for HIV has dramatically increased in low- and middle-income countries. From preliminary data, more than 6 million people were receiving ART in these countries at the end of 2010, as compared to just 400 000 at the end of 2003.

Current scenario

  • Nearly all drugs currently used to treat HIV eventually stop working when patient develops resistance to ART. HIV develops resistance when it evades the effects of these treatments.[1] A recent study estimated the percentage of the American HIV positive population with some form of drug resistance to be 76.3%.[2]
  • The extent of HIV drug resistance resulting from recent ART scale up in resource-limited countries has not systematically been quantified due to the lack of reliable data and information.

Mechanism of drug resistance

  • As a retrovirus, HIV uses the enzyme reverse transcriptase to synthesize DNA from its RNA genome but it lacks a mechanism for correcting errors made while reproducing its genome.[1] As a result, HIV replicates its genome with the highest known mutation rate of any living organism.[1] This creates an ideal situation for natural selection to act on the HIV population, as genetic variation is the raw material for natural selection.
  • These mutations accumulate over generations in the HIV infected population, resulting in great genetic variation and an increased probability of a virion developing an evolutionary selective advantage over other virions.[1] Natural selection then acts on HIV by selecting for virions with higher fitness, as all others are eventually killed off by drug treatments.[3] The virions that are able to escape the harmful effects of the drug then create an entirely new, drug resistant population.
  • With HAART, at least 3 drugs are administered at the same time, which substantially reduces viral load and, compared to results of earlier regimens, increases the life expectancy of patients. These advantages follow because the mutations necessary to confer resistance to HAART are generated at a slower rate and are lost more rapidly than those conferring resistance to monotherapy or dual therapy. Moreover, viral strains resistant to HAART are not as efficient at completing their own life cycle (e.g., their replication rates are lower), they may generate less illness and lower proportion of deaths among infected persons, and the viral strains are less likely to be transmitted to other persons.

Consequences of drug resistance

The consequences of drug resistance include

  1. Treatment failure.
  2. Increased direct and indirect health costs associated with the need to start more costly second-line treatment for patients.
  3. The spread of resistant strains of HIV.
  4. The need to develop new anti-HIV drugs

Strategies against HIV Drug resistance

WHO and its HIV ResNet group of experts and organizations have developed a Global strategy for prevention and assessment of HIV drug resistance. The strategy aims to build evidence on the scale of HIV drug resistance and equip and prepare countries with knowledge, skills and systems to respond should drug-resistant HIV epidemics emerge.

Reference

  1. 1.0 1.1 1.2 1.3 Freeman, S., and J. C. Herron. 2007. Evolutionary Analysis. 4th ed. A case for evolutionary thinking: understanding HIV. Pearson Benjamin Cummings, San Francisco, CA.
  2. Richman, D. D., S. C. Morton, T. Wrin, N. Hellmann, S. Berry, M. F. Shapiro, and S. A. Bozzette. 2004. The prevalence of antiretroviral drug resistance in the United States. AIDS. 18: 1393-1401.
  3. Kozal, M. J. 2009. Drug-resistant human immunodeficiency virus. Clin Microbial Infec. 15 (Suppl. 1): 69-73.