Familial hypocalciuric hypercalcemia: Difference between revisions

Jump to navigation Jump to search
Line 14: Line 14:
Three genetically heterogeneous variants are reported so far for familial hypocalciuric hypercalcemia.  
Three genetically heterogeneous variants are reported so far for familial hypocalciuric hypercalcemia.  
Type 1 - due to loss-of-functional mutations of the calcium-sensing receptor (encoded by CASR). Type 2 - unknown cause.
Type 1 - due to loss-of-functional mutations of the calcium-sensing receptor (encoded by CASR). Type 2 - unknown cause.
Type 3 - associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which alter calcium-sensing receptor endocytosis <ref name="urlMutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia — NEJM">{{cite web |url=http://www.nejm.org/doi/full/10.1056/NEJMoa1300253#t=article |title=Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia — NEJM |format= |work= |accessdate=}}</ref><ref name="NesbitHannan2012">{{cite journal|last1=Nesbit|first1=M Andrew|last2=Hannan|first2=Fadil M|last3=Howles|first3=Sarah A|last4=Reed|first4=Anita A C|last5=Cranston|first5=Treena|last6=Thakker|first6=Clare E|last7=Gregory|first7=Lorna|last8=Rimmer|first8=Andrew J|last9=Rust|first9=Nigel|last10=Graham|first10=Una|last11=Morrison|first11=Patrick J|last12=Hunter|first12=Steven J|last13=Whyte|first13=Michael P|last14=McVean|first14=Gil|last15=Buck|first15=David|last16=Thakker|first16=Rajesh V|title=Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3|journal=Nature Genetics|volume=45|issue=1|year=2012|pages=93–97|issn=1061-4036|doi=10.1038/ng.2492}}</ref>
Type 3 - associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which alter calcium-sensing receptor endocytosis  


==[[Familial hypocalciuric hypercalcemia pathophysiology|Pathophysiology]]==
==[[Familial hypocalciuric hypercalcemia pathophysiology|Pathophysiology]]==
The pathophysiology of [Familial hypocalciuric hypercalcemia] is due to an inactivating missense mutation in the calcium sensing receptor (CaSR)<ref name="pmid9109436">{{cite journal |vauthors=Bai M, Janicic N, Trivedi S, Quinn SJ, Cole DE, Brown EM, Hendy GN |title=Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism |journal=J. Clin. Invest. |volume=99 |issue=8 |pages=1917–25 |year=1997 |pmid=9109436 |pmc=508016 |doi=10.1172/JCI119359 |url=}}</ref><ref name="pmid27803801">{{cite journal |vauthors=Colella M, Gerbino A, Hofer AM, Curci S |title=Recent advances in understanding the extracellular calcium-sensing receptor |journal=F1000Res |volume=5 |issue= |pages= |year=2016 |pmid=27803801 |pmc=5074356 |doi=10.12688/f1000research.8963.1 |url=}}</ref><ref name="pmid9362389">{{cite journal |vauthors=Brown EM |title=Mutations in the calcium-sensing receptor and their clinical implications |journal=Horm. Res. |volume=48 |issue=5 |pages=199–208 |year=1997 |pmid=9362389 |doi= |url=}}</ref> located on the short arm of the chromosome 3 (FBHH3q)<ref name="pmid1682230">{{cite journal |vauthors=Garioch JJ, Mackie RM, Campbell I, Forsyth A |title=Keratinocyte expression of intercellular adhesion molecule 1 (ICAM-1) correlated with infiltration of lymphocyte function associated antigen 1 (LFA-1) positive cells in evolving allergic contact dermatitis reactions |journal=Histopathology |volume=19 |issue=4 |pages=351–4 |year=1991 |pmid=1682230 |doi= |url=}}</ref>. The mutation of CaSR is associated with two inherited conditions FBHH and neonatal hyperparathyroidism<ref name="pmid7916660">{{cite journal |vauthors=Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG |title=Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism |journal=Cell |volume=75 |issue=7 |pages=1297–303 |year=1993 |pmid=7916660 |doi= |url=}}</ref>. CaSR is a plasma membrane G protein coupled receptor which is expressed on the chief cells of the parathyroid glands and the cells lining the renal tubules. CasR has the ability to sense any changes in the circulating calcium concentrated and send this information through the signaling pathway to the Parathyroid gland that modifies the PTH secretion.
The pathophysiology of [Familial hypocalciuric hypercalcemia] is due to an inactivating missense mutation in the calcium sensing receptor (CaSR) located on the short arm of the chromosome 3 (FBHH3q). The mutation of CaSR is associated with two inherited conditions FBHH and neonatal hyperparathyroidism. CaSR is a plasma membrane G protein coupled receptor which is expressed on the chief cells of the parathyroid glands and the cells lining the renal tubules. CasR has the ability to sense any changes in the circulating calcium concentrated and send this information through the signaling pathway to the Parathyroid gland that modifies the PTH secretion.


==[[Familial hypocalciuric hypercalcemia causes|Causes]]==
==[[Familial hypocalciuric hypercalcemia causes|Causes]]==
Line 25: Line 25:


Parathyroid-related
Parathyroid-related
Hyperparathyroidism
Hyperparathyroidism
Primary hyperparathyroidism
Primary hyperparathyroidism
Secondary hyperparathyroidism
Secondary hyperparathyroidism
Tertiary hyperparathyroidism
Tertiary hyperparathyroidism
Familial hypocalciuric hypercalcemia
Familial hypocalciuric hypercalcemia
Non-parathyroid related
Non-parathyroid related
Malignancy
Malignancy
Humoral hypercalcemia of malignancy
Humoral hypercalcemia of malignancy
Osteolytic tumors
Osteolytic tumors
Production of calcitriol by tumors
Production of calcitriol by tumors
Ectopic parathyroid hormone production
Ectopic parathyroid hormone production
Medication-induced
Medication-induced
Thiazide diuretics
Thiazide diuretics
Lithium
Lithium
Nutritional
Nutritional
Milk-alkali syndrome
Milk-alkali syndrome
Vitamin D toxicity
Vitamin D toxicity
Granulomatous disease
Granulomatous disease
Sarcoidosis
Sarcoidosis
Surgical
Surgical
Immobilization
Immobilization


Line 63: Line 84:
==Case Studies==
==Case Studies==
[[Familial hypocalciuric hypercalcemia case study one|Case #1]]
[[Familial hypocalciuric hypercalcemia case study one|Case #1]]
<references />

Revision as of 15:18, 15 September 2017

Familial hypocalciuric hypercalcemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Familial Hypocalciuric Hypercalcemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Familial hypocalciuric hypercalcemia On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Familial hypocalciuric hypercalcemia

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Familial hypocalciuric hypercalcemia

CDC on Familial hypocalciuric hypercalcemia

Familial hypocalciuric hypercalcemia in the news

Blogs on Familial hypocalciuric hypercalcemia

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Familial hypocalciuric hypercalcemia

For patient information, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ajay Gade MD[2]]

Synonyms and keywords:

Overview

Historical Perspective

Classification

Three genetically heterogeneous variants are reported so far for familial hypocalciuric hypercalcemia. Type 1 - due to loss-of-functional mutations of the calcium-sensing receptor (encoded by CASR). Type 2 - unknown cause. Type 3 - associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which alter calcium-sensing receptor endocytosis

Pathophysiology

The pathophysiology of [Familial hypocalciuric hypercalcemia] is due to an inactivating missense mutation in the calcium sensing receptor (CaSR) located on the short arm of the chromosome 3 (FBHH3q). The mutation of CaSR is associated with two inherited conditions FBHH and neonatal hyperparathyroidism. CaSR is a plasma membrane G protein coupled receptor which is expressed on the chief cells of the parathyroid glands and the cells lining the renal tubules. CasR has the ability to sense any changes in the circulating calcium concentrated and send this information through the signaling pathway to the Parathyroid gland that modifies the PTH secretion.

Causes

Differentiating Xyz from other Diseases

Familial hypocalciuric hypercalcemia should be differentiated from other causes of hypercalcemia. Causes of hypercalcemia include:

Parathyroid-related

Hyperparathyroidism

Primary hyperparathyroidism

Secondary hyperparathyroidism

Tertiary hyperparathyroidism

Familial hypocalciuric hypercalcemia

Non-parathyroid related

Malignancy

Humoral hypercalcemia of malignancy

Osteolytic tumors

Production of calcitriol by tumors

Ectopic parathyroid hormone production

Medication-induced

Thiazide diuretics

Lithium

Nutritional

Milk-alkali syndrome

Vitamin D toxicity

Granulomatous disease

Sarcoidosis

Surgical

Immobilization

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms | Physical Examination | Electrocardiogram | Laboratory Findings | X-Ray Findings | Echocardiography and Ultrasound | CT-Scan Findings | MRI Findings | Other Diagnostic Studies | Other Imaging Findings

Treatment

Medical Therapy | Surgery | Primary Prevention | Secondary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies

Case Studies

Case #1