CCL8: Difference between revisions

Jump to navigation Jump to search
m (Bot: HTTP→HTTPS (v475))
 
imported>OAbot
m (Open access bot: add pmc identifier to citation with #oabot.)
 
Line 2: Line 2:
'''Chemokine (C-C motif) ligand 8''' (CCL8), also known as '''monocyte chemoattractant protein 2''' (MCP2), is a [[protein]] that in humans is encoded by the ''CCL8'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: chemokine (C-C motif) ligand 8| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6355| accessdate = }}</ref><ref name="pmid9119400">{{cite journal | vauthors = Van Coillie E, Fiten P, Nomiyama H, Sakaki Y, Miura R, Yoshie O, Van Damme J, Opdenakker G | title = The human MCP-2 gene (SCYA8): cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2 | journal = Genomics | volume = 40 | issue = 2 | pages = 323–31 |date=March 1997 | pmid = 9119400 | doi = 10.1006/geno.1996.4594 | url = | issn = }}</ref>
'''Chemokine (C-C motif) ligand 8''' (CCL8), also known as '''monocyte chemoattractant protein 2''' (MCP2), is a [[protein]] that in humans is encoded by the ''CCL8'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: chemokine (C-C motif) ligand 8| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6355| accessdate = }}</ref><ref name="pmid9119400">{{cite journal | vauthors = Van Coillie E, Fiten P, Nomiyama H, Sakaki Y, Miura R, Yoshie O, Van Damme J, Opdenakker G | title = The human MCP-2 gene (SCYA8): cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2 | journal = Genomics | volume = 40 | issue = 2 | pages = 323–31 |date=March 1997 | pmid = 9119400 | doi = 10.1006/geno.1996.4594 | url = | issn = }}</ref>


CCL8 is a small [[cytokine]] belonging to the CC [[chemokine]] family.  The CCL8 protein is produced as a [[protein precursor|precursor]] containing 109 [[amino acid]]s, which is cleaved to produce mature CCL8 containing 75 amino acids.  The [[gene]] for CCL8 is encoded by 3 [[exon]]s and is located within a large cluster of CC chemokines on [[chromosome 17]]q11.2 in humans.<ref name="pmid9119400"/><ref name="pmid1613466">{{cite journal | vauthors = Van Damme J, Proost P, Lenaerts JP, Opdenakker G | title = Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family | journal = J. Exp. Med. | volume = 176 | issue = 1 | pages = 59–65 |date=July 1992 | pmid = 1613466 | pmc = 2119277 | doi = 10.1084/jem.176.1.59| url = | issn = }}</ref> MCP-2 is [[chemotaxis|chemotactic]] for and activates many different immune cells, including [[mast cell]]s, [[eosinophil]]s and [[basophil]]s, (that are implicated in [[allergic]] responses), and [[monocyte]]s, [[T cell]]s, and [[NK cell]]s that are involved in the [[inflammation|inflammatory]] response.<ref name="pmid8558070">{{cite journal | vauthors = Proost P, Wuyts A, Van Damme J | title = Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1 | journal = J. Leukoc. Biol. | volume = 59 | issue = 1 | pages = 67–74 |date=January 1996 | pmid = 8558070 | doi = | url = | issn = }}</ref><ref name="Gong_1998">{{cite journal | vauthors = Gong W, Howard OM, Turpin JA, Grimm MC, Ueda H, Gray PW, Raport CJ, Oppenheim JJ, Wang JM | title = Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication | journal = J. Biol. Chem. | volume = 273 | issue = 8 | pages = 4289–92 |date=February 1998 | pmid = 9468473 | doi = 10.1074/jbc.273.8.4289| url = | issn = }}</ref>  CCL8 elicits its effects by binding to several different cell surface receptors called [[chemokine receptor]]s.  These receptors include [[CC chemokine receptors#CCR1|CCR1]], [[CC chemokine receptors#CCR2|CCR2B]] and [[CC chemokine receptors#CCR5|CCR5]].<ref name="Gong_1998"/>
CCL8 is a small [[cytokine]] belonging to the CC [[chemokine]] family.  The CCL8 protein is produced as a [[protein precursor|precursor]] containing 109 [[amino acid]]s, which is cleaved to produce mature CCL8 containing 75 amino acids.  The [[gene]] for CCL8 is encoded by 3 [[exon]]s and is located within a large cluster of CC chemokines on [[chromosome 17]]q11.2 in humans.<ref name="pmid9119400"/><ref name="pmid1613466">{{cite journal | vauthors = Van Damme J, Proost P, Lenaerts JP, Opdenakker G | title = Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family | journal = J. Exp. Med. | volume = 176 | issue = 1 | pages = 59–65 |date=July 1992 | pmid = 1613466 | pmc = 2119277 | doi = 10.1084/jem.176.1.59| url = | issn = }}</ref> MCP-2 is [[chemotaxis|chemotactic]] for and activates many different immune cells, including [[mast cell]]s, [[eosinophil]]s and [[basophil]]s, (that are implicated in [[allergic]] responses), and [[monocyte]]s, [[T cell]]s, and [[NK cell]]s that are involved in the [[inflammation|inflammatory]] response.<ref name="pmid8558070">{{cite journal | vauthors = Proost P, Wuyts A, Van Damme J | title = Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1 | journal = J. Leukoc. Biol. | volume = 59 | issue = 1 | pages = 67–74 |date=January 1996 | pmid = 8558070 | doi = | url = | issn = }}</ref><ref name="Gong_1998">{{cite journal | vauthors = Gong W, Howard OM, Turpin JA, Grimm MC, Ueda H, Gray PW, Raport CJ, Oppenheim JJ, Wang JM | title = Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication | journal = J. Biol. Chem. | volume = 273 | issue = 8 | pages = 4289–92 |date=February 1998 | pmid = 9468473 | doi = 10.1074/jbc.273.8.4289| url = | issn = }}</ref>  CCL8 elicits its effects by binding to several different cell surface receptors called [[chemokine receptor]]s.  These receptors include [[CC chemokine receptors#CCR1|CCR1]], [[CC chemokine receptors#CCR2|CCR2B]], [[CC chemokine receptors#CCR3|CCR3]] and [[CC chemokine receptors#CCR5|CCR5]].<ref name="Gong_1998"/><ref>{{cite journal| pmid=29281969 | doi=10.1186/s12865-017-0237-5 | volume=18 | title=Functional expression of CCL8 and its interaction with chemokine receptor CCR3 | pmc=5745793 | year=2017 | journal=BMC Immunol | page=54 | vauthors=Ge B, Li J, Wei Z, Sun T, Song Y, Khan NU}}</ref>


CCL8 is a CC chemokine that utilizes multiple cellular receptors to attract and activate human leukocytes. CCL8 is a potent inhibitor of [[HIV1]] by virtue of its high-affinity binding to the receptor CCR5, one of the major co-receptors for HIV1.<ref name="pmid11087354">{{PDB|1ESR}}; {{cite journal | vauthors = Blaszczyk J, Coillie EV, Proost P, Damme JV, Opdenakker G, Bujacz GD, Wang JM, Ji X | title = Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors | journal = Biochemistry | volume = 39 | issue = 46 | pages = 14075–81 | date=November 2000 | pmid = 11087354 | doi = 10.1021/bi0009340| url = | issn = }}</ref>
CCL8 is a CC chemokine that utilizes multiple cellular receptors to attract and activate human leukocytes. CCL8 is a potent inhibitor of [[HIV1]] by virtue of its high-affinity binding to the receptor CCR5, one of the major co-receptors for HIV1.<ref name="pmid11087354">{{PDB|1ESR}}; {{cite journal | vauthors = Blaszczyk J, Coillie EV, Proost P, Damme JV, Opdenakker G, Bujacz GD, Wang JM, Ji X | title = Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors | journal = Biochemistry | volume = 39 | issue = 46 | pages = 14075–81 | date=November 2000 | pmid = 11087354 | doi = 10.1021/bi0009340| url = | issn = }}</ref> In addition, CCL8 attributes to the growth of metastasis in breast cancer cells. The manipulation of this chemokine activity influences the histology of tumors promoting steps of metastatic processes.<ref>{{cite journal| pmc=5112152 | pmid=27181207 | doi=10.1038/onc.2016.161 | volume=35 | title=A CCL8 gradient drives breast cancer cell dissemination | year=2016 | journal=Oncogene | pages=6309–6318 | vauthors=Farmaki E, Chatzistamou I, Kaza V, Kiaris H}}</ref> CCL8 is also involved in attracting macrophages to the decidua in labor.<ref>{{cite journal| pmid=23451115 | doi=10.1371/journal.pone.0056946 | volume=8 | title=Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour | pmc=3579936 | year=2013 | journal=PLoS One | page=e56946 | vauthors=Hamilton SA, Tower CL, Jones RL}}</ref>


==References==
==References==
Line 23: Line 23:
*{{cite journal  |vauthors=Villa C, Venturelli E, Fenoglio C |title=CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration. |journal=J. Neurol. |volume=256 |issue= 8 |pages= 1379–81 |year= 2009 |pmid= 19415413 |doi= 10.1007/s00415-009-5138-y |display-authors=etal}}
*{{cite journal  |vauthors=Villa C, Venturelli E, Fenoglio C |title=CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration. |journal=J. Neurol. |volume=256 |issue= 8 |pages= 1379–81 |year= 2009 |pmid= 19415413 |doi= 10.1007/s00415-009-5138-y |display-authors=etal}}
*{{cite journal  |vauthors=Siezen CL, Bont L, Hodemaekers HM |title=Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes. |journal=Pediatr. Infect. Dis. J. |volume=28 |issue= 4 |pages= 333–5 |year= 2009 |pmid= 19258923 |doi= 10.1097/INF.0b013e31818e2aa9 |display-authors=etal}}
*{{cite journal  |vauthors=Siezen CL, Bont L, Hodemaekers HM |title=Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes. |journal=Pediatr. Infect. Dis. J. |volume=28 |issue= 4 |pages= 333–5 |year= 2009 |pmid= 19258923 |doi= 10.1097/INF.0b013e31818e2aa9 |display-authors=etal}}
*{{cite journal  |vauthors=Vyshkina T, Sylvester A, Sadiq S |title=CCL genes in multiple sclerosis and systemic lupus erythematosus. |journal=J. Neuroimmunol. |volume=200 |issue= 1-2 |pages= 145–52 |year= 2008 |pmid= 18602166 |doi= 10.1016/j.jneuroim.2008.05.016 |display-authors=etal}}
*{{cite journal  |vauthors=Vyshkina T, Sylvester A, Sadiq S |title=CCL genes in multiple sclerosis and systemic lupus erythematosus. |journal=J. Neuroimmunol. |volume=200 |issue= 1–2 |pages= 145–52 |year= 2008 |pmid= 18602166 |doi= 10.1016/j.jneuroim.2008.05.016 |display-authors=etal|pmc=5301077 }}
*{{cite journal  |vauthors=Ruhwald M, Bodmer T, Maier C |title=Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis. |journal=Eur. Respir. J. |volume=32 |issue= 6 |pages= 1607–15 |year= 2008 |pmid= 18684849 |doi= 10.1183/09031936.00055508 |display-authors=etal}}
*{{cite journal  |vauthors=Ruhwald M, Bodmer T, Maier C |title=Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis. |journal=Eur. Respir. J. |volume=32 |issue= 6 |pages= 1607–15 |year= 2008 |pmid= 18684849 |doi= 10.1183/09031936.00055508 |display-authors=etal}}
*{{cite journal  |vauthors=Skibola CF, Bracci PM, Halperin E |title=Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma. |journal=PLoS ONE |volume=3 |issue= 7 |pages= e2816 |year= 2008 |pmid= 18636124 |doi= 10.1371/journal.pone.0002816 |pmc=2474696|display-authors=etal}}
*{{cite journal  |vauthors=Skibola CF, Bracci PM, Halperin E |title=Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma. |journal=PLoS ONE |volume=3 |issue= 7 |pages= e2816 |year= 2008 |pmid= 18636124 |doi= 10.1371/journal.pone.0002816 |pmc=2474696|display-authors=etal}}
Line 29: Line 29:
*{{cite journal  |vauthors=Xie Z, Zhang J, Wu J |title=Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. |journal=Diabetes |volume=57 |issue= 12 |pages= 3222–30 |year= 2008 |pmid= 18835932 |doi= 10.2337/db08-0610 |pmc=2584127|display-authors=etal}}
*{{cite journal  |vauthors=Xie Z, Zhang J, Wu J |title=Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. |journal=Diabetes |volume=57 |issue= 12 |pages= 3222–30 |year= 2008 |pmid= 18835932 |doi= 10.2337/db08-0610 |pmc=2584127|display-authors=etal}}
*{{cite journal  |vauthors=Rajaraman P, Brenner AV, Neta G |title=Risk of meningioma and common variation in genes related to innate immunity. |journal=Cancer Epidemiol. Biomarkers Prev. |volume=19 |issue= 5 |pages= 1356–61 |year= 2010 |pmid= 20406964 |doi= 10.1158/1055-9965.EPI-09-1151 |pmc=3169167|display-authors=etal}}
*{{cite journal  |vauthors=Rajaraman P, Brenner AV, Neta G |title=Risk of meningioma and common variation in genes related to innate immunity. |journal=Cancer Epidemiol. Biomarkers Prev. |volume=19 |issue= 5 |pages= 1356–61 |year= 2010 |pmid= 20406964 |doi= 10.1158/1055-9965.EPI-09-1151 |pmc=3169167|display-authors=etal}}
*{{cite journal  |vauthors=Velez DR, Fortunato S, Thorsen P |title=Spontaneous preterm birth in African Americans is associated with infection and inflammatory response gene variants. |journal=Am. J. Obstet. Gynecol. |volume=200 |issue= 2 |pages= 209.e1-27 |year= 2009 |pmid= 19019335 |doi= 10.1016/j.ajog.2008.08.051 |display-authors=etal}}
*{{cite journal  |vauthors=Velez DR, Fortunato S, Thorsen P |title=Spontaneous preterm birth in African Americans is associated with infection and inflammatory response gene variants. |journal=Am. J. Obstet. Gynecol. |volume=200 |issue= 2 |pages= 209.e1-27 |year= 2009 |pmid= 19019335 |doi= 10.1016/j.ajog.2008.08.051 |display-authors=etal|pmc=4829203 }}
*{{cite journal  |vauthors=Dean RA, Cox JH, Bellac CL |title=Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. |journal=Blood |volume=112 |issue= 8 |pages= 3455–64 |year= 2008 |pmid= 18660381 |doi= 10.1182/blood-2007-12-129080 |display-authors=etal}}
*{{cite journal  |vauthors=Dean RA, Cox JH, Bellac CL |title=Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. |journal=Blood |volume=112 |issue= 8 |pages= 3455–64 |year= 2008 |pmid= 18660381 |doi= 10.1182/blood-2007-12-129080 |display-authors=etal}}
*{{cite journal  |vauthors=Hori T, Naishiro Y, Sohma H |title=CCL8 is a potential molecular candidate for the diagnosis of graft-versus-host disease. |journal=Blood |volume=111 |issue= 8 |pages= 4403–12 |year= 2008 |pmid= 18256320 |doi= 10.1182/blood-2007-06-097287 |pmc=2288733|display-authors=etal}}
*{{cite journal  |vauthors=Hori T, Naishiro Y, Sohma H |title=CCL8 is a potential molecular candidate for the diagnosis of graft-versus-host disease. |journal=Blood |volume=111 |issue= 8 |pages= 4403–12 |year= 2008 |pmid= 18256320 |doi= 10.1182/blood-2007-06-097287 |pmc=2288733|display-authors=etal}}
*{{cite journal  |vauthors=Schuurhof A, Bont L, Siezen CL |title=Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls. |journal=Pediatr. Pulmonol. |volume=45 |issue= 6 |pages= 608–13 |year= 2010 |pmid= 20503287 |doi= 10.1002/ppul.21229 |display-authors=etal}}
*{{cite journal  |vauthors=Schuurhof A, Bont L, Siezen CL |title=Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls. |journal=Pediatr. Pulmonol. |volume=45 |issue= 6 |pages= 608–13 |year= 2010 |pmid= 20503287 |doi= 10.1002/ppul.21229 |display-authors=etal}}
{{refend}}
{{refend}}


{{PDB Gallery|geneid=6355}}
{{PDB Gallery|geneid=6355}}
Line 41: Line 40:


[[Category:Cytokines]]
[[Category:Cytokines]]
{{gene-17-stub}}

Latest revision as of 22:48, 22 May 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Chemokine (C-C motif) ligand 8 (CCL8), also known as monocyte chemoattractant protein 2 (MCP2), is a protein that in humans is encoded by the CCL8 gene.[1][2]

CCL8 is a small cytokine belonging to the CC chemokine family. The CCL8 protein is produced as a precursor containing 109 amino acids, which is cleaved to produce mature CCL8 containing 75 amino acids. The gene for CCL8 is encoded by 3 exons and is located within a large cluster of CC chemokines on chromosome 17q11.2 in humans.[2][3] MCP-2 is chemotactic for and activates many different immune cells, including mast cells, eosinophils and basophils, (that are implicated in allergic responses), and monocytes, T cells, and NK cells that are involved in the inflammatory response.[4][5] CCL8 elicits its effects by binding to several different cell surface receptors called chemokine receptors. These receptors include CCR1, CCR2B, CCR3 and CCR5.[5][6]

CCL8 is a CC chemokine that utilizes multiple cellular receptors to attract and activate human leukocytes. CCL8 is a potent inhibitor of HIV1 by virtue of its high-affinity binding to the receptor CCR5, one of the major co-receptors for HIV1.[7] In addition, CCL8 attributes to the growth of metastasis in breast cancer cells. The manipulation of this chemokine activity influences the histology of tumors promoting steps of metastatic processes.[8] CCL8 is also involved in attracting macrophages to the decidua in labor.[9]

References

  1. "Entrez Gene: chemokine (C-C motif) ligand 8".
  2. 2.0 2.1 Van Coillie E, Fiten P, Nomiyama H, Sakaki Y, Miura R, Yoshie O, Van Damme J, Opdenakker G (March 1997). "The human MCP-2 gene (SCYA8): cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2". Genomics. 40 (2): 323–31. doi:10.1006/geno.1996.4594. PMID 9119400.
  3. Van Damme J, Proost P, Lenaerts JP, Opdenakker G (July 1992). "Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family". J. Exp. Med. 176 (1): 59–65. doi:10.1084/jem.176.1.59. PMC 2119277. PMID 1613466.
  4. Proost P, Wuyts A, Van Damme J (January 1996). "Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1". J. Leukoc. Biol. 59 (1): 67–74. PMID 8558070.
  5. 5.0 5.1 Gong W, Howard OM, Turpin JA, Grimm MC, Ueda H, Gray PW, Raport CJ, Oppenheim JJ, Wang JM (February 1998). "Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication". J. Biol. Chem. 273 (8): 4289–92. doi:10.1074/jbc.273.8.4289. PMID 9468473.
  6. Ge B, Li J, Wei Z, Sun T, Song Y, Khan NU (2017). "Functional expression of CCL8 and its interaction with chemokine receptor CCR3". BMC Immunol. 18: 54. doi:10.1186/s12865-017-0237-5. PMC 5745793. PMID 29281969.
  7. PDB: 1ESR​; Blaszczyk J, Coillie EV, Proost P, Damme JV, Opdenakker G, Bujacz GD, Wang JM, Ji X (November 2000). "Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors". Biochemistry. 39 (46): 14075–81. doi:10.1021/bi0009340. PMID 11087354.
  8. Farmaki E, Chatzistamou I, Kaza V, Kiaris H (2016). "A CCL8 gradient drives breast cancer cell dissemination". Oncogene. 35: 6309–6318. doi:10.1038/onc.2016.161. PMC 5112152. PMID 27181207.
  9. Hamilton SA, Tower CL, Jones RL (2013). "Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour". PLoS One. 8: e56946. doi:10.1371/journal.pone.0056946. PMC 3579936. PMID 23451115.

External links

Further reading